
 

DESIGN AND ANALYSIS OF ALGORITHMS 

 

UNIT 1 

 
INTRODUCTION TO DATA STRUCTURE: Elementary Data Structures: Stack – Queues – Trees – 

Priority Queue – Graphs – What is an Algorithm? – Algorithm Specification – Performance Analysis: Space 

Complexity – Time Complexity – Asymptotic Notation – Randomized Algorithms. 

  

 1.1. DATA STRUCTURES 

Data Structure: 

 

 A data structure is a specialized format for organizing, processing, retrieving and storing data. 

 Data structures make it easy for users to access and work with the data they need in appropriate ways. 

 In computer science and computer programming, a data structure may be selected or designed to 

store data for the purpose of using it with various algorithms.  

 n some cases, the algorithm's basic operations are tightly coupled to the data structure's design. 

Each data structure contains information about the data values, relationships between the data and -

- in some cases -- functions that can be applied to the data. 

 Examples of Data Structures: Arrays, Linked Lists, Stack, Queue, Trees, etc.  

 Category: It is classified into two categories - Primitive and Non-Primitive. 
 

 Non-primitive data structures can be further classified into two categories - Linear and Non-

linear. 

The four basic data structure types are linear data structures, tree data structures, hash data structures 

and graph data structures. 

 

 
 

 

 

 



 

Primitive: 

 

1. Primitive Data Structures are the data structures consisting of the numbers and the characters that 

come in-built into programs. 

2. These data structures can be manipulated or operated directly by machine-level instructions. 

3. Basic data types like Integer, Float, Character, and Boolean come under the Primitive Data Structures. 

4. These data types are also called Simple data types, as they contain characters that can't be divided further 

 

 Non-Primitive: 

 

1. Non-Primitive Data Structures are those data structures derived from Primitive Data Structures. 

2. These data structures can't be manipulated or operated directly by machine-level instructions. 

3. The focus of these data structures is on forming a set of data elements that is either homogeneous (same 

data type) or heterogeneous (different data types). 

4. Based on the structure and arrangement of data, we can divide these data structures into two sub-categories 

- 

a. Linear Data Structures 

b. Non-Linear Data Structures 
 

 Linear data structure:  
 

 Data structure in which data elements are arranged sequentially or linearly, where each element 

is attached to its previous and next adjacent elements is called a linear data structure. 

 Examples of linear data structures are array, stack, queue, linked list, etc. 

 

 Static data structure:   
 Static data structure has a fixed memory size. It is easier to access the elements in a 

static data structure. 

 An example of this data structure is an array. 

 Dynamic data structure:  
 In dynamic data structure, the size is not fixed. It can be randomly updated during the 

runtime which may be considered efficient concerning the memory (space) complexity 

of the code. 

 Examples of this data structure are queue, stack, etc. 

 

 Non-linear data structure: 
 

 Non-Linear Data Structures are data structures where the data elements are not arranged in 

sequential order. Here, the insertion and removal of data are not feasible in a linear manner. 

There exists a hierarchical relationship between the individual data items. 

 

Characteristics of data structures:     

 

 Three characteristics are…. 
 

 Linear or non-linear.  Whether the data items are arranged in sequential order, such as with an array, 

or in an unordered sequence, such as with a graph. 

 Homogeneous or heterogeneous. Describes whether all data items in a given repository are of the 

same type.  

 Static or dynamic.  Describes how the data structures are compiled. Static data structures have fixed 

sizes, structures and memory locations at compile time.  

 

 

 

 

 

https://www.techtarget.com/searchnetworking/definition/dynamic-and-static


 

Advantages of Data Structures 

 

 Data structure is a secure way of storing the data on our system. 

 Data structures help us to process the data easily. 

 Data structures also help us to store the data on the disks very efficiently so that we can easily retrieve 

the data. 
 

Advantages Disadvantages 

Efficient Data Organization Complexity 

Fast Data Retrieval Learning Curve 

Space Optimization Memory Overhead 

Flexibility and Modularity Performance Trade-offs 

 

Elementary data types:  

 

 Integer, real, character, Boolean, enumeration, pointer. 

 

Elementary Data Structures: 

 

 Stacks, Queues, Linked lists, and Root trees. 

  
 1.2. STACK 

Stack: 

 
 Stack is an ordered list in which all insertions (Push) and deletions (Pop) are made at same end 

called the top. 

 Stack follows Last in First out (LIFO) policy so stack is also called as LIFO List. 
 A Stack is a linear data structure in which the insertion of a new element and removal of an 

existing element takes place at the same end represented as the top of the stack. 

 Example: Arranging Note / Books in a table, Stack of CD/DVD, Stack of Plates. 
 

 

Basic Operations on Stacks: 
  

 The most fundamental operations in the stack include: PUSH(), POP(), STACK_FULL(), 

STACK_EMPTY().  

 These are all built-in operations to carry out data manipulation and to check the status of the stack. 



 

 

 

The following diagram depicts a stack and its operations: 
 

Working of Stack  

 The operations work as follows: 

 A pointer called TOP is used to keep track of the top element in the stack. 

 When initializing the stack, we set its value to -1 so that we can check if the stack is empty by 

comparing TOP == -1. 

 On pushing an element, we increase the value of TOP and place the new element in the position pointed 

to by TOP. 

 On popping an element, we return the element pointed to by TOP and reduce its value. 

 Before pushing, we check if the stack is already full 

 Before popping, we check if the stack is already empty 

 

Types of Stack: 

 

 There are two types of stacks they are Register stack and Memory stack. 

 Register stack: Limited amount of data items are stored in the stack. 

 Memory stack: Huge amount of data items are stored in the memory. 

 

Insertion: push() 

 
 push() is an operation that inserts elements into the stack.  

 Before inserting the overflow condition must be checked to make sure that stack not reached the 

maximum size.  

 The following is an algorithm that describes the push() operation. 

PUSH(S,x) 

1 If STACK_FULL(S) 

2 error “overflow” 

3 else S.top= S.top+1s 

4 S[S.top]=x 



 

 

The above algorithm follow the following steps. 

 
 Checks if the stack is full. 

 If the stack is full, produces an error and exit. 

 If the stack is not full, increments top to point next empty space. 

 Adds data element to the stack location, where top is pointing. 

 Returns success. 

 

PUSH OPERATION IN STACK 
 

Deletion: pop() 

 
 pop() is an operation that delete element from the stack.  

 Before deleting the underflow condition must be checked to make sure that stack is not empty.  

 The following is an algorithm that describes the pop() operation. 

POP(S) 

1 if STACK-EMPTY(S) 

2 error “Underflow” 

3 else S.top = S.top -1 

4 retrun S[S.top +1] 

 
The above algorithm follows the following steps. 

 
 Checks if the stack is empty. 

 If the stack is empty, produces an error and exit. 

 If the stack is not empty, change top to next element position. 

 Returns deleted element. 



 

 

Applications of STACK: 

 

 String reversal: Stack is also used for reversing a string. For example, we want to reverse a 

"SIASC" string, so we can achieve this with the help of a stack. 

 First, we push all the characters of the string in a stack until we reach the null character. 

 After pushing all the characters, we start taking out the character one by one until we reach 

the  bottom of the stack. 

 UNDO/REDO: It can also be used for performing UNDO/REDO operations. 

 Recursion: The recursion means that the function is calling itself again. To maintain the previous 

states, the compiler creates a system stack in which all the previous records of the function are 

maintained. 

 DFS (Depth First Search): This search is implemented on a Graph, and Graph uses the stack 

data structure. 

 Backtracking: Suppose we have to create a path to solve a maze problem. If we are moving in a 

particular path, and we realize that we come on the wrong way. In order to come at the beginning 

of the path to create a new path, we have to use the stack data structure. 

 Expression conversion: Stack can also be used for expression conversion. This is one of the most 

important applications of stack. The list of the expression conversion is given below: 

Infix to prefix 

Infix to postfix 

Prefix to infix 

Prefix to postfix 

Postfix to infix 

 Memory management: The stack manages the memory. The memory is assigned in the contiguous 

memory blocks. The memory is known as stack memory as all the variables are assigned in a 

function call stack memory. The memory size assigned to the program is known to the compiler. 

When the function is created, all its variables are assigned in the stack memory. When the function 

completed its execution, all the variables assigned in the stack are released. 

 

Advantages of Stack: 

 

Advantages Disadvantages 

It is easy to get started It is not flexible 

It does efficient data 

management It has a lack of scalability 

It has a low hardware 

Requirement Unable to Copy & Paste 



 

Anyone with access can 

edit the program 

It has a limited memory 

size 

 

Real-life examples of a stack: 

A deck of cards, piles of books, piles of money, and many more. 
 

   Stack Time Complexity: 

 
 For the array-based implementation of a stack, the push and pop operations take constant time, i.e. O(1). 

 Time Complexity: O(1), In the push function a single element is inserted at the last position.  

 Auxiliary Space: O(1), As no extra space is being used. 

Some Applications of Stacks: 

 

 The Stack is used as a Temporary Storage Structure for recursive operations. 

 Stack is also utilized as Auxiliary Storage Structure for function calls, nested operations, and deferred/postponed 

functions. 

 We can manage function calls using Stacks. 

 Stacks are also utilized to evaluate the arithmetic expressions in different programming languages. 

 Stacks are also helpful in converting infix expressions to postfix expressions. 

 Stacks allow us to check the expression's syntax in the programming environment. 

 We can match parenthesis using Stacks. 

 Stacks can be used to reverse a String. 

 Stacks are helpful in solving problems based on backtracking. 

 We can use Stacks in depth-first search in graph and tree traversal. 

 Stacks are also used in Operating System functions. 

 Stacks are also used in UNDO and REDO functions in an edit. 
 

  
Example: 

 

Construction of a binary expression tree for infix notation (a+b)*(c*(d+e)). 

 

 
Binary Tree 

 

 

Infix Expression: ((a+b)*(c*(d+e))) 

Prefix Expression: *+ab *c + de 

Postfix Expression: ab+cde+** 

  
  
  
  



 

  
 1.3. QUEUE 

 Queue: 

  
 A queue can be defined as an ordered list which enables insert operations to be performed at one end 

called REAR and delete operations to be performed at another end called FRONT. 
 A Queue is a linear data structure 

 Queue is referred to be as First In First Out list (LIFO). 

 For example, people waiting in line for a rail ticket form a queue. 
 
 

 
 

 

Applications of Queue: 

 

 Due to the fact that queue performs actions on first in first out basis which is quite fair for the ordering 

of actions.  

 There are various applications of queues: 

1. Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU. 

2. Queues are used in asynchronous transfer of data (where data is not being transferred at the 

same rate between two processes) for eg. pipes, file IO, sockets. 

3. Queues are used as buffers in most of the applications like MP3 media player, CD player, etc. 

4. Queues are used to maintain the play list in media players in order to add and remove the 

songs from the play-list. 

5. Queues are used in operating systems for handling interrupts. 

 

Basic Operations on Stacks: 

 

 The most fundamental operations in the stack include: ENQUEUE ( ), DEQUEUE ( ).  

 These are all built-in operations to carry out data manipulation and to check the status of the stack. 

 

Insertion: ENQUEUE( ) 

 

 Enqueue() is an operation that inserts elements into the queue. 

 The following is an algorithm that describes the Enqueue () operation. 



 

ENQUEUE( ) 
 
 

 
 

 

 

 

 

 

 
Deletion: DEQUEUE( ) 

 

 Dequeue() is an operation that delete elements from the queue. 

 The following is an algorithm that describes the dequeue () operation. 
 

 

 
 
 



 

Characteristics of Queue: 

 Queue can handle multiple data,  

 We can access both ends,  

 They are fast and flexible.  

 

Features of Queue: 

 Like stack, queue is also an ordered list of elements of similar data types. 

 Queue is a FIFO( First in First Out ) structure. 

 Once a new element is inserted into the Queue, all the elements inserted before the new element in the 

queue must be removed, to remove the new element. 

 peek( ) function is oftenly used to return the value of first element without dequeuing it. 

Applications of Queue: 

 Task scheduling, resource allocation, message queues, print spooling, traffic management, customer 

service, and data buffering. 

 Process scheduling, disk scheduling, memory management, IO buffer, pipes, call center phone systems, and 

interrupt handling. 

Complexity Analysis of Queue Operations: 

 Enqueue: O(1) 

 Dequeue: O(1) 

 Size: O(1) 

Some Applications of Queues: 

 Queues are generally used in the breadth search operation in Graphs. 

 Queues are also used in Job Scheduler Operations of Operating Systems, like a keyboard buffer queue to 

store the keys pressed by users and a print buffer queue to store the documents printed by the printer. 

 Queues are responsible for CPU scheduling, Job scheduling, and Disk Scheduling. 

 Priority Queues are utilized in file-downloading operations in a browser. 

 Queues are also used to transfer data between peripheral devices and the CPU. 

 Queues are also responsible for handling interrupts generated by the User Applications for the CPU. 

 
Advantages of Queue: 

 A large amount of data can be managed efficiently with ease. 

 Operations such as insertion and deletion can be performed and follow first in first out rule. 

 Queues are useful when a particular service is used by multiple consumers. 

 Queues are fast in speed for data inter-process communication. 

 Queues can be used in the implementation of other data structures. 

 

Disadvantages of Queue: 

 The operations such as insertion and deletion of elements from the middle are time consuming. 

 Limited Space. 

 In a classical queue, a new element can only be inserted when the existing elements are deleted from the queue. 

 Maximum size of a queue must be defined prior. 

 

Types of Queue: 

 

 There are four different types of queue that are listed as follows –  

 Simple Queue or Linear Queue 

 Circular Queue 

  Priority Queue 

 Double Ended Queue (or Deque) 

 

 

 



 

 

Type 1: Simple Queue or Linear Queue: 

 

 It is the most basic queue in which the insertion of an item is done at the front of the queue and deletion 

takes place at the end of the queue. Ordered collection of comparable data kinds. Queue structure is FIFO 

(First in, First Out). 

 
Type 2: Circular Queue: 

 
 A Circular Queue is an extended version of a normal queue where the last element of the queue is connected to the 

first element of the queue forming a circle.  

 The operations are performed based on FIFO (First In First Out) principle.  

 It is also called 'Ring Buffer'. 

 
 

 A Circular Queue is an extended version of a normal queue where the last element of the queue is 

connected to the first element of the queue forming a circle. 

 

Operations on Circular Queue: 

 Front: Get the front item from the queue. 

 Rear: Get the last item from the queue. 

 EnQueue(value) This function is used to insert an element into the circular queue. In a circular queue, the 

new element is always inserted at the rear position.  

 Check whether the queue is full – [i.e., the rear end is in just before the front end in a circular manner]. 

 If it is full then display Queue is full.  

 If the queue is not full then,  insert an element at the end of the queue. 

 deQueue() This function is used to delete an element from the circular queue. In a circular queue, the 

element is always deleted from the front position.  

 Check whether the queue is Empty. 

 If it is empty then display Queue is empty. 

 If the queue is not empty, then get the last element and remove it from the queue. 

Applications of a Circular Queue 

 Memory management: circular queue is used in memory management. 

 Process Scheduling: A CPU uses a queue to schedule processes. 

 Traffic Systems: Queues are also used in traffic systems. 

 page replacement algorithm, 

 CPU Scheduling 

 Inter-process communication 

https://www.geeksforgeeks.org/queue-data-structure/


 

Abstract Data typesof Circular Queue: 

 The following are the operations that can be performed on a circular queue. 

 enQueue() 

 deQueue() 

 front() 

 rear() 

Advantages of Circular Queue: 

 It provides a quick way to store FIFO data with a maximum size. 

 Efficient utilization of the memory. 

 Doesn’t use dynamic memory. 

 Simple implementation. 

 All operations occur in O(1) constant time. 

Disadvantages of Circular Queue: 

 In a circular queue, the number of elements you can store is only as much as the queue length, you have to 

know the maximum size beforehand. 

 Some operations like deletion or insertion can be complex in circular queue. 

 The implementation of some algorithms like priority queue can be difficult in circular queue. 

 Circular queue has a fixed size, and when it is full, there is a risk of overflow if not managed properly. 

Real-time Applications of Circular Queue: 

 Months in a year: Jan –> Feb –> March –> and so on upto Dec–> Jan –> . . . 

 Eating: Breakfast –> lunch –> snacks –> dinner –> breakfast –> and so on.. 

 Traffic Light is also a real-time application of circular queue. 

 Clock is also a better example for the Circular Queue. 

Type 3: Priority Queue: 

 A priority queue is a type of queue that arranges elements based on their priority values. 

 Elements with higher priority values are typically retrieved before elements with lower priority values.  

 In a priority queue, each element has a priority value associated with it. 
 

 
Properties of Priority Queue 

 Every item has a priority associated with it. 

 An element with high priority is dequeued before an element with low priority. 

 If two elements have the same priority, they are served according to their order in the queue. 

 

Operations of a Priority Queue: 

 A typical priority queue supports the following operations: 

 Insertion in a Priority Queue 

o When a new element is inserted in a priority queue, it moves to the empty slot from top to bottom and left to 

right. 

 Deletion in a Priority Queue   

o A max heap, the maximum element is the root node. And it will remove the element which has maximum 

priority first.  

 



 

 Peek in a Priority Queue 

o This operation helps to return the maximum element from Max Heap or the minimum element from Min 

Heap without deleting the node from the priority queue. 

 

 

Application of Priority queue 

 Dijkstra’s Shortest Path Algorithm using priority queue: 

 Prim’s algorithm 

 Data Compression 

 Heap Sort 

 Operating System 

 Robotics etc.,  

 

Type 4: Deque (or, Double Ended Queue): 
 

 Insertion and removal of elements can either be performed from the front or the rear.  

 It does not follow FIFO rule (First In First Out). 

 Deque is a double-ended queue that is the implementation of the simple Queue.  

 Still, the insertion and deletion of elements take place from both the ends.  

 A deque in data structure is a linear data structure that does not follow the FIFO rule (First in first out) , 

that is, in a deque data structure, the data can be inserted and deleted from both front and rear ends.  

 The representation of a deque in data structure is represented below - 

 
 

 

Types : 

o Input restricted queue 

o Output restricted queue 

Input restricted Queue 

In input restricted queue, insertion operation can be performed at only one end, while deletion can be 

performed from both ends. 

 

 



 

Output restricted Queue 

 In output restricted queue, deletion operation can be performed at only one end, while insertion can be 

performed from both ends. 

 
Advantages of Deque: 

 Add and remove items from the both front and back of the queue. 

 Deques are faster in adding and removing the elements to the end or beginning. 

 The clockwise and anti-clockwise rotation operations are faster in a deque. 

 Dynamic Size: Deques can grow or shrink dynamically. 

Disadvantages of Deque: 

 Priority Queues are that the enqueue and dequeue operations are slow  

 A time complexity of O(log n). 

Applications of Deque: 

 Applied as both stack and queue, as it supports both operations. 

 Storing a web browser's history. 

 Storing a software application's list of undo operations. 

 Job scheduling algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.4. TREE 

Tree: 

 
 In linear data structure data is organized in sequential order and in non-linear data structure data is 

organized in random order. 

 A tree is a very popular non-linear data structure used in a wide range of applications. 

 A tree data structure can also be defined as follows... 

 
 In tree data structure, every individual element is called as Node. Node in a tree data structure 

stores the actual data of that particular element and link to next element in hierarchical structure. 
 In a tree data structure, if we have N number of nodes then we can have a maximum of N-1 number of 

links. 

Example: 

 
2. Edge: 

 
 In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree 

with 'N' number of nodes there will be a maximum of 'N-1' number of edges. 

 

 

 

 

 

 

 

 

 

 

Tree Terminology: 

 

 In a tree data structure, we use the following terminology... 

1. Root: 

 

 In a tree data structure, the first node is called as Root Node. Every tree must have a root node. We 

can say that the root node is the origin of the tree data structure. In any tree, there must be only one 

root node. We never have multiple root nodes in a tree. 

Tree data structure is a collection of data (Node) which is organized in  

hierarchical structure recursively 



 

 

3. Parent: 

 

 In a tree data structure, the node which is a predecessor of any node is called as PARENT NODE. In 

simple words, the node which has a branch from it to any other node is called a parent node. Parent 

node can also be defined as "The node which has child / children". 

 
4. Child: 

 

6. Leaf: 

 In a tree data structure, the node which does not have a child is called as LEAF Node. In simple 

words, a leaf is a node with no child. In a tree data structure, the leaf nodes are also called as External 

Nodes. External node is also a node with no child. In a tree, leaf node is also called as 'Terminal' 

node. 

 In a tree data structure, the node which is descendant of any node is called as CHILD Node. In 

simple words, the node which has a link from its parent node is called as child node. In a tree, any 

parent node can have any number of child nodes. In a tree, all the nodes except root are child nodes. 

5. Siblings: 
 

 In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple 

words, the nodes with the same parent are called Sibling nodes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Degree: 

 

 In a tree data structure, the total number of children of a node is called as DEGREE of that Node. In 

simple words, the Degree of a node is total number of children it has. The highest degree of a node 

among all the nodes in a tree is called as 'Degree of Tree' 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Level: 

 

 In a tree data structure, the root node is said to be at Level 0 and the children of root node are at 

Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple 

words, in a tree each step from top to bottom is called as a Level and the Level count starts with '0' 

and incremented by one at each level (Step). 

 
 

9. Height: 

 

 In a tree data structure, the total number of edges from leaf node to a particular node in the longest 

path is called as HEIGHT of that Node. In a tree, height of the root node is said to be height of 

the tree. In a tree, height of all leaf nodes is '0'. 



 

 
 

subtree on its parent node. 

 
 

Types of Tree Data Structure: 

 

 The following are the different types of trees data structures: 

 Binary Tree 

 Binary Search Tree (BST) 

 AVL Tree 

 B-Tree 

10. Depth: 
 

 In a tree data structure, the total number of egdes from root node to a particular node is called as 

DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the 

longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in a 

tree is said to be depth of that 

tree. In a tree, depth of the root node is '0'. 

11. Sub Tree: 

 In a tree data structure, each child from a node forms a subtree recursively. Every child node will 

form a 



 

 

1. Binary Tree: 

 

 A binary tree is a tree data structure in which each node can have 0, 1, or 2 children – left and right 

child. 

2. Binary Search Tree (BST): 
 

 A binary search tree (BST) is also called an ordered or sorted binary tree in which the value at the left 

sub- tree is lesser than that of the root and the right subtree has a value greater than that of the root. 

 Every binary search tree is a binary tree. However, not every binary tree is a binary search tree.  

 What’s the difference between a binary tree and a binary search tree? The most important difference 

between the two is that in a BST, the left child node’s value must be less than the parent’s while the 

right child node’s value must be higher. 

 

 

 

 

 

 

 

 

 
 

 

3. AVL Tree: 

 

 AVL trees are a special kind of self-balancing binary search tree where the height of every node’s 

left and right subtree differs by at most one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. B-Tree: 

 B tree is a self-balancing search tree wherein each node can contain more than one key and more 

than two children. It is a special type of m-way tree and a generalized binary search tree. B-tree can 

store many keys in a single node and can have multiple child nodes. This reduces the height and 

enables faster disk access. 



 

 
 

 

 
Basic Operation of Tree Data Structure: 

 Create – create a tree in the data structure. 

 Insert − Inserts data in a tree. 

 Search − Searches specific data in a tree to check whether it is present or not. 

 Traversal: 

 Preorder Traversal 

 In order Traversal 

 Post-order Traversal 

 
Tree Applications: 

 

 Binary Search Trees (BSTs) are used to quickly check whether an element is present in a set or not. 

 Heap is a kind of tree that is used for heap sort. 

 A modified version of a tree called Tries is used in modern routers to store routing information. 

 Most popular databases use B-Trees and T-Trees, which are variants of the tree structure we learned 

above to store their data 

 Compilers use a syntax tree to validate the syntax of every program you write. 
 

Need for Tree Data Structure: 

 

1.  To store information that naturally forms a hierarchy. For example, the file system on a computer:  

2. Trees (with some ordering e.g., BST) provide moderate access/search (quicker than Linked List and 

slower than arrays).  

3. Trees provide moderate insertion/deletion (quicker than Arrays and slower than Unordered Linked 

Lists).  

4. Like Linked Lists and unlike Arrays, Trees don’t have an upper limit on the number of nodes as nodes 

are linked using pointers. 

 

Application of Tree Data Structure: 

 File System 

 Data Compression 

 Compiler Design 

 Database Indexing 

Advantages of Tree Data Structure: 

 

 Tree offer Efficient Searching Depending on the type of tree, with average search times of O(log n) for 

balanced trees like AVL.  

 Trees provide a hierarchical representation of data, making it easy to organize and navigate large 

amounts of information. 

 The recursive nature of trees makes them easy to traverse and manipulate using recursive algorithms. 

 

 



 

Disadvantages of Tree Data Structure: 

 

 Unbalanced Trees, meaning that the height of the tree is skewed towards one side, which can lead 

to inefficient search times. 

 Trees demand more memory space requirements than some other data structures like arrays and linked 

lists, especially if the tree is very large. 

 The implementation and manipulation of trees can be complex and require a good understanding of the 

algorithms. 

Some Applications of Trees: 

 Trees implement hierarchical structures in computer systems like directories and file systems. 

 Trees are also used to implement the navigation structure of a website. 

 We can generate code like Huffman's code using Trees. 

 Trees are also helpful in decision-making in Gaming applications. 

 Trees are responsible for implementing priority queues for priority-based OS scheduling functions. 

 Trees are also responsible for parsing expressions and statements in the compilers of different 

programming languages. 

 We can use Trees to store data keys for indexing for Database Management System (DBMS). 

 Spanning Trees allows us to route decisions in Computer and Communications Networks. 

 Trees are also used in the path-finding algorithm implemented in Artificial Intelligence (AI), Robotics, and 

Video Games Applications 

 

 

 1.5. PRIORITY QUEUE 

 Priority Queue: 

  
 Any data structure that supports the operations of search min (or max), insert, and delete min (or max, 

respectively) is called a priority queue. Priority queue concepts implemented using Heap and Heap 

Sorts. 

 HEAP: 

  
 Heap is a complete binary tree structure where each element satisfies a heap property.  

 In a complete binary tree, all levels are full except the last level, i.e., nodes in all levels except the 

last level will have two children. 

  The last level will be filled from the left. Here, each heap node stores a value key, which defines the 

relative position of that node inside the heap. 

 Heap can be Max heap or Min heap. 
Max Heap: Complete Binary tree having largest elements is at the root of the heap. 

 
 

 

 

 

 



 

 

 

Min Heap: Complete Binary tree having smallest elements is at the root of the heap. 

 

 

Algorithm for inserting elements into the Heap 

 

 

 

 

 

 

 

 

 

 

 
Max Heap Construction Algorithm: 

 

 An algorithm for max heap by inserting one element at a time. 

  At any point of time, heap must maintain its property.  

 While insertion, we also assume that we are inserting a node in an already heapified tree. 

 



 

Forming a Heap from the set {40, 80, 35, 90, 45, 50, 70} 

 



 

Max Heap Deletion Algorithm: 

 

 Algorithm to delete from max heap. Deletion in Max (or Min) Heap always happens at the root to 

remove the Maximum (or minimum) value. 
 

 
 

 HEAP SORT: 
 

 Heap sort is a popular and efficient sorting algorithm. 

  The concept of heap sort is to eliminate the elements one by one from the heap part of the list, and 

then insert them into the sorted part of the list. 

 

Algorithm 

1. HeapSort(arr) 

2. BuildMaxHeap(arr) 

3. for i = length(arr) to 2 

4. swap arr[1] with arr[i] 

5. heap_size[arr] = heap_size[arr] ? 1 

6. MaxHeapify(arr,1) 

7. End 

 

BuildMaxHeap(arr) 

 

1. BuildMaxHeap(arr) 

2. heap_size(arr) = length(arr) 

3. for i = length(arr)/2 to 1 

4. MaxHeapify(arr,i) 

5. End 

 

MaxHeapify(arr,i) 

 

1. MaxHeapify(arr,i) 

2. L = left(i) 

3. R = right(i) 

4. if L ? heap_size[arr] and arr[L] > arr[i] 

5. largest = L 

6. else 

7. largest = i 

8. if R ? heap_size[arr] and arr[R] > arr[largest] 

9. largest = R 

10. if largest != i 

11. swap arr[i] with arr[largest] 

12. MaxHeapify(arr,largest) 

13. End 

 



 

Working of Heap sort Algorithm: 

 

 In heap sort, basically, there are two phases involved in the sorting of elements.  

 By using the heap sort algorithm, they are as follows - 

o The first step includes the creation of a heap by adjusting the elements of the array. 

o After the creation of heap, now remove the root element of the heap repeatedly by shifting it to 

the end of the array, and then store the heap structure with the remaining elements. 
 

 

 

 After converting the given heap into max heap, the array elements are - 

 

 
 Next, we have to delete the root element (89) from the max heap.  

 To delete this node, we have to swap it with the last node, i.e. (11).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 
 
 

 

     
 

 After swapping the array element 89 with 11, and converting the heap into max-heap, the elements of 

array are - 
 

 
 In the next step, again, we have to delete the root element (81) from the max heap. 

  To delete this node, we have to swap it with the last node, i.e. (54).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 

 

 

 
 Construct a heap from the given array and convert it into max heap. 



 

 

                               

 
 After swapping the array element 81 with 54 and converting the heap into max-heap, the elements of array are - 

       

 

 In the next step, we have to delete the root element (76) from the max heap again.  

 To delete this node, we have to swap it with the last node, i.e. (9).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 

 

 

     

 
 After swapping the array element 76 with 9 and converting the heap into max-heap, the elements of 

array are 

 
 
 

 
 In the next step, again we have to delete the root element (54) from the max heap.  

 To delete this node, we have to swap it with the last node, i.e. (14).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 
 

  
 

  

 



 

  
 

  

 
 After swapping the array element 54 with 14 and converting the heap into max-heap, the elements of 

array are - 
 
 

 
 In the next step, again we have to delete the root element (22) from the max heap.  

 To delete this node, we have to swap it with the last node, i.e. (11).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 
 

 
 After swapping the array element 22 with 11 and converting the heap into max-heap, the elements of 

array are - 

 

 
 In the next step, again we have to delete the root element (14) from the max heap.  

 To delete this node, we have to swap it with the last node, i.e. (9).  

 After deleting the root element, we again have to heapify it to convert it into max heap. 
 
 

 

 
 After swapping the array element 14 with 9 and converting the heap into max-heap, the elements of 

array are 

 



 

 In the next step, again we have to delete the root element (11) from the max heap. 

  To delete this node, we have to swap it with the last node, i.e. (9). 

  After deleting the root element, we again have to heapify it to convert it into max heap. 

 

 
 After swapping the array element 11 with 9, the elements of array are - 

 
 

 
 Now, heap has only one element left. After deleting it, heap will be empty. 

 

 

 After completion of sorting, the array elements are - 
 
 

 
 Now, the array is completely sorted. 

 

Heap sort complexity: 
 

Case Time Complexity 

Best Case O(n logn) 

Average Case O(n log n) 

Worst Case O(n log n) 

 

1. Time Complexity: 

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already sorted. 

The best-case time complexity of heap sort is O(n logn). 

o Average Case Complexity - It occurs when the array elements are in jumbled order that is not 

properly ascending and not properly descending. The average case time complexity of heap sort 

is O(n log n). 



 

o Worst Case Complexity - It occurs when the array elements are required to be sorted in reverse 

order. That means suppose you have to sort the array elements in ascending order, but its elements 

are in descending order. The worst-case time complexity of heap sort is O(n log n). 

The time complexity of heap sort is O(n logn) in all three cases (best case, average case, and worst case). 

The height of a complete binary tree having n elements is logn. 

 
2. Space Complexity: 

 

Space Complexity O(1) 

Stable N0 

 
1.6. GRAPH 

 

 A graph can be defined as group of vertices and edges that are used to connect these vertices. 

  A graph can be seen as a cyclic tree, where the vertices (Nodes) maintain any complex relationship 

among them instead of having parent child relationship. 
 

Definition: 
 

 A graph G can be defined as an ordered set G(V, E) where V(G) represents the set of vertices and 

E(G) represents the set of edges which are used to connect these vertices. 
 

 A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six edges ((A,B), (B,C), (C,E), (E,D), (D,B), 

(D,A)) is shown in the following figure. 
 

 

 
Directed and Undirected Graph: 

 

 A graph can be directed or undirected. However, in an undirected graph, edges are not associated 

with the directions with them. 

  An undirected graph is shown in the above figure since its edges are not attached with any of the 

directions. If an edge exists between vertex A and B then the vertices can be traversed from B to 

A as well as A to B. 

 



 

Graph Terminology: 
 

Path: 

 A path can be defined as the sequence of nodes that are followed in order to reach some terminal 

node V from the initial node U. 

 
Closed Path: 

 A path will be called as closed path if the initial node is same as terminal node. A path will be closed 

path if V0=VN. 

 
Simple Path: 

 If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called as closed 

simple path. 

 
Cycle: 

 A cycle can be defined as the path which has no repeated edges or vertices except the first and last 

vertices. 
 

Connected Graph: 

 A connected graph is the one in which some path exists between every two vertices (u, v) in V. There 

are no isolated nodes in connected graph. 
 

Complete Graph: 

 A complete graph is the one in which every node is connected with all other nodes. A complete 

graph contain n(n-1)/2 edges where n is the number of nodes in the graph. 
 

Weighted Graph: 

 In a weighted graph, each edge is assigned with some data such as length or weight. The weight of 

an edge e can be given as w (e) which must be a positive (+) value indicating the cost of traversing the 

edge. 
 

Digraph: 

 A digraph is a directed graph in which each edge of the graph is associated with some direction 

and the traversing can be done only in the specified direction. 
 

Loop: 

 An edge that is associated with the similar end points can be called as Loop. 

 
Adjacent Nodes: 

 If two nodes u and v are connected via an edge e, then the nodes u and v are called as neighbours or 

adjacent nodes. 

 
Degree of the Node: 

 A degree of a node is the number of edges that are connected with that node. A node with degree 0 

is called as isolated node. 

 

Basic Operations on Graphs: 

 Below are the basic operations on the graph: 

 Insertion of Nodes/Edges in the graph – Insert a node into the graph. 

 Deletion of Nodes/Edges in the graph – Delete a node from the graph. 

 Searching on Graphs – Search an entity in the graph. 

 Traversal of Graphs – Traversing all the nodes in the graph. 



 

Graph representation: 

 

 There are two ways to store Graphs into the computer's memory: 

o Sequential representation (or, Adjacency matrix representation) 

o Linked list representation (or, Adjacency list representation) 

 In sequential representation, an adjacency matrix is used to store the graph. Whereas in linked 

list representation, there is a use of an adjacency list to store the graph. 

 

Sequential representation: 
 

 In sequential representation, there is a use of an adjacency matrix to represent the mapping between 

vertices and edges of the graph. We can use an adjacency matrix to represent the undirected graph, 

directed graph, weighted directed graph, and weighted undirected graph. 

 

 If adj[i][j] = w, it means that there is an edge exists from vertex i to vertex j with weight w. 

 

 An entry Aij in the adjacency matrix representation of an undirected graph G will be 1 if an edge 

exists between Vi and Vj. If an Undirected Graph G consists of n vertices, then the adjacency matrix 

for that graph is n x n, and the matrix A = [aij] can be defined as - 
 

aij = 1 {if there is a path exists from Vi to Vj} 

aij = 0 {Otherwise} 

 It means that, in an adjacency matrix, 0 represents that there is no association exists between the 

nodes, whereas 1 represents the existence of a path between two edges. 
 

 If there is no self-loop present in the graph, it means that the diagonal entries of the adjacency matrix 

will be 0. 
 

 Now, let's see the adjacency matrix representation of an undirected graph. 
 

 

 In the above figure, an image shows the mapping among the vertices (A, B, C, D, E), and this mapping is 

represented by using the adjacency matrix. 

 

 There exist different adjacency matrices for the directed and undirected graph. In a directed graph, an 

entry Aij will be 1 only when there is an edge directed from Vi to Vj. 

 
Adjacency matrix for a directed graph: 

 

 In a directed graph, edges represent a specific path from one vertex to another vertex. Suppose a path 

exists from vertex A to another vertex B; it means that node A is the initial node, while node B is the 

terminal node. 

 

 Consider the below-directed graph and try to construct the adjacency matrix of it. 



 

 
 

 It is similar to an adjacency matrix representation of a directed graph except that instead of using the 

'1' for the existence of a path, here we have to use the weight associated with the edge.  

 The weights on the graph edges will be represented as the entries of the adjacency matrix.  

 We can understand it with the help of an example. 

  Consider the below graph and its adjacency matrix representation. In the representation, we can see 

that the weight associated with the edges is represented as the entries in the adjacency matrix. 
 

 In the above image, we can see that the adjacency matrix representation of the weighted directed 

graph is different from other representations. It is because, in this representation, the non-zero values 

are replaced by the actual weight assigned to the edges. 

 

Linked list representation: 

 

 An adjacency list is used in the linked representation to store the Graph in the computer's memory. It 

is efficient in terms of storage as we only have to store the values for edges. 

 Let's see the adjacency list representation of an undirected graph. 

 

 



 

 In the above figure, we can see that there is a linked list or adjacency list for every node of the graph. 

From vertex A, there are paths to vertex B and vertex D.  

 These nodes are linked to nodes A in the given adjacency list. 

 An adjacency list is maintained for each node present in the graph, which stores the node value and a 

pointer to the next adjacent node to the respective node.  

 If all the adjacent nodes are traversed, then store the NULL in the pointer field of the last node of the 

list. 

 The sum of the lengths of adjacency lists is equal to twice the number of edges present in an 

undirected graph. 

 Now, consider the directed graph, and let's see the adjacency list representation of that graph. 
 

 

 For a directed graph, the sum of the lengths of adjacency lists is equal to the number of edges present 

in the graph. 

 Now, consider the weighted directed graph, and let's see the adjacency list representation of that graph. 
 

 
 

 In the case of a weighted directed graph, each node contains an extra field that is called the weight 

of the node. 

 In an adjacency list, it is easy to add a vertex. Because of using the linked list, it also saves space. 
 

Some Applications of Graphs: 

 Graphs help us represent routes and networks in transportation, travel, and communication applications. 

 Graphs are used to display routes in GPS. 

 Graphs also help us represent the interconnections in social networks and other network-based applications. 

 Graphs are utilized in mapping applications. 

 Graphs are responsible for the representation of user preference in e-commerce applications. 



 

 Graphs are also used in Utility networks in order to identify the problems posed to local or municipal 

corporations. 

 Graphs also help to manage the utilization and availability of resources in an organization. 

 Graphs are also used to make document link maps of the websites in order to display the connectivity 

between the pages through hyperlinks. 

 Graphs are also used in robotic motions and neural networks. 
 

 1.7. WHAT IS AN ALGORITHM? 

Algorithm: 

 An algorithm is a procedure used for solving a problem or performing a computation.  

 Algorithms act as an exact list of instructions that conduct specified actions step by step in either 

hardware- or software- based routines. 

 Algorithms are widely used throughout all areas of IT.  

 In mathematics and computer science, an algorithm usually refers to a small procedure that solves a 

recurrent problem.  

 Algorithms are also used as specifications for performing data processing and play a major role in 

automated systems. 

 An algorithm could be used for sorting sets of numbers. 
 

Definition: An algorithm is a finite set of instructions that is followed, accomplishes a particular task. In 

addition all algorithms must satisfy the following criteria: 

1. Input: Zero or more quantities are externally supplied. 
2. Output: At least one quantity is produced. 

3. Definiteness: Each instruction is clear and unambiguous. 

4. Finiteness: If we trace out the instructions of an algorithm, then for all cases the algorithm 

terminates after a finite number of steps. 

5. Effectiveness: Every instruction must be very basic so that it can be carried out, in principle, by a 

person using only pencil and paper. It is also must be feasible. 

 
 Algorithms that are definite and effective are also called computational procedures.  

 One important example of computational procedures is the operating system of a digital computer.  

 This procedure is designed to control the execution of jobs, in such a way that when no jobs are 

available, it does not terminate but continues in waiting state until a new job is entered. 

 The study of algorithms includes many important and active areas of research.   

 

Issues or Study of Algorithm (Issues in witting algorithm): 

 

 Due to complicities of the Issues involved, a branch of computer engineering known as Software 

Engineering has emerged, where the main concern is software quality control. 

  There are five distinct areas of study one can identify: 

1. To devise algorithms: Creating an algorithm is an art which may never be fully automated. 

Important design techniques such as linear, nonlinear, useful in fields other than computer science such 

as operations research and electrical engineering. 

2. To express an algorithm: An algorithm can be expressed in various ways: flow-chart, pseudo-code, 

program and like. Out of these only the program in certain programming language are acceptable to a 

computer. There are different ways by which an algorithm can be expressed p-casual or native 

programming structured programming, object-oriented programming, use of recursions and so n. 

3. To validate algorithms: Once an algorithm is devised it is necessary to show that it computes the 

correct answer for all possible legal inputs. This process is called algorithm validation. The purpose of 

validation is to assure us that this algorithm will work correctly independently of the issues concerning 



 

the programming language it will eventually be written in. 

4. To analyze algorithms: This field of study is called analysis of algorithms. As an algorithm is 

executed, it uses the computer’s central processing unit (CPU) to perform operations and its memory to 

hold the program and data. Analysis of algorithms or performance analysis refers to the task of 

determining how much computing time and storage an algorithm requires. 

 

5. To test a program: Testing a program consists of two-parts-debugging and profiling. It is importen 

to be familiar with the debugging of a program, though what we refer here is a more systematic 

approach to debugging. An interesting observation about debugging made by E.W.Dijkstra, a pioneer 

computer scientist from Netherlands, is worth quoting here:”debugging can only point to the presence of 

errors and newer their absence.” 

 

Need for algorithms: 

 

 Algorithms are necessary for solving complex problems efficiently and effectively.  

 They help to automate processes and make them more reliable, faster, and easier to perform. 

 Algorithms also enable computers to perform tasks that would be difficult or impossible for humans to 

do manually. 

 They are used in various fields such as mathematics, computer science, engineering, finance, and many 

others to optimize processes, analyze data, make predictions, and provide solutions to problems. 

 

Characteristics of an Algorithm: 

 

 
 

 As one would not follow any written instructions to cook the recipe, but only the standard one.  

 Similarly, not all written instructions for programming are an algorithm. 

 For some instructions to be an algorithm, it must have the following characteristics: 

 Clear and Unambiguous: The algorithm should be unambiguous. Each of its steps should be 

clear in all aspects and must lead to only one meaning. 

 Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined inputs. It may 

or may not take input. 

 Well-Defined Outputs: The algorithm must clearly define what output will be yielded and it 

should be well-defined as well. It should produce at least 1 output. 

 Finite-ness: The algorithm must be finite, i.e. it should terminate after a finite time. 

 Feasible: The algorithm must be simple, generic, and practical, such that it can be executed with 

the available resources. It must not contain some future technology or anything. 

 Language Independent: The Algorithm designed must be language-independent, i.e. it must be 

just plain instructions that can be implemented in any language, and yet the output will be the 

same, as expected. 



 

 Input: An algorithm has zero or more inputs. Each that contains a fundamental operator must 

accept zero or more inputs. 

 Output: An algorithm produces at least one output. Every instruction that contains a fundamental 

operator must accept zero or more inputs. 

 Definiteness: All instructions in an algorithm must be unambiguous, precise, and easy to 

interpret. By referring to any of the instructions in an algorithm one can clearly understand what 

is to be done. Every fundamental operator in instruction must be defined without any ambiguity. 

 Finiteness: An algorithm must terminate after a finite number of steps in all test cases. Every 

instruction which contains a fundamental operator must be terminated within a finite amount of 

time. Infinite loops or recursive functions without base conditions do not possess finiteness. 

 Effectiveness: An algorithm must be developed by using very basic, simple, and feasible 

operations so that one can trace it out by using just paper and pencil. 

 

Properties of Algorithm: 

 

 It should terminate after a finite time. 

 It should produce at least one output. 

 It should take zero or more input. 

 It should be deterministic means giving the same output for the same input case. 

 Every step in the algorithm must be effective i.e. every step should do some work. 

 

Advantages of Algorithms: 

 

 It is easy to understand. 

 An algorithm is a step-wise representation of a solution to a given problem. 

 In an Algorithm the problem is broken down into smaller pieces or steps hence, it is easier for the 

programmer to convert it into an actual program. 

 

Disadvantages of Algorithms: 

 

 Writing an algorithm takes a long time so it is time-consuming. 

 Understanding complex logic through algorithms can be very difficult. 

 Branching and looping statements are difficult to show in Algorithms (imp). 



 

 1.8. ALGORITHM SPECIFICATION 

  

 Algorithm can be described in three ways: 

 Natural language: implement a natural language like English. When this way is choose care should 

be taken, we ensure that each & every statement is definite. 

 Flow charts: Graphic representations denoted flowcharts, only if the algorithm is small and simple. 

 Pseudo code Method: In this method, we should typically describe algorithm as program, which 

resembles language like Pascal & ALGOL.  

 Pseudo code is a kind of structured English for described algorithm, it allows the designer to focus on the 

logic of the algorithm without being distracted (diverted) by details of language syntax. 

  At the same time, the pseudo code needs to be complete.  

 It describes the entire logic of the algorithm so that implementation becomes a rote mechanical task of 

translating line by line –into source code. 

  

Pseudocode Conventions: 

 

1. Comments begin with // and continue until the end of line. 

2. Blocks are indicated with matching braces : { and }. A compound statement can be represented as a 

block. 

3. An identifier begins with a letter. The data types of variables are not explicitly declared. The types 

will be clear from the context. Whether a variable is global or local to a procedure will also be evident 

from the context. 

Ex: node = record 

{ 

datatype_1 data_1; 

. 

. 

datatype_n data_n; 

node *link; 

} 

4. Assignment of values to variable is done using the assignment statement <variable>:=<expression>; 

5. There are two Boolean values true and false. In order to produce these values, the logical operators 

and or and not and the relational operators <,≤,=, ≠, , and > are provided. 

6. Elements of multidimensional arrays are accessed using [ and ]. Ex. A[i,j] 
7. The following looping statements are employed : for, while and repeat until. The while loop takes 

the following form: 

while <condition> do 
{ 

<statement 1> 

. 

. 

<statement n> 

} 

8. A conditional statement has the following forms: 

if <condition> then <statement> 

if <condition> then <statement 1> else <statement 2> 
Here <condition> is a Boolean expression and <statement>, <statement1> and <statement 2> are 

arbitrary statements (simple or compound). 

9. Input and output are done using the instructions read and write. No format is used to specify the size 

of input or output quantities. 

10. There is only one type of procedure: Algorithm. An algorithm consists of a heading and a body. The 

heading takes the form 

Algorithm Name (<parameter list>) 



 

 

Where Name is the name of the procedure and (<parameter list>) is a listing of the procedure 

parameters. The body has one or more (simple or compound) statements enclosed within braces { 

and }.  An algorithm my or may not return any values. 

 
Ex: Algorithm finds and returns the maximum of n given numbers: 

 
Recursive Algorithms: 

 

 A recursive function is a function that is defined in terms of itself. An algorithm that calls itself is direct 

recursive.  

 Algorithm A is said to indirect recursive if it calls another algorithm which in turn calls 

A. These recursive mechanisms are extremely powerful, but even more important. 

 

 



 

 
 

 

 1.9. PERFORMANCE ANALYSIS 

  
Performance Analysis: 

 

 Performance of an algorithm means predicting the resources which are required to an algorithm to   perform 

its task. 

 That means when we have multiple algorithms to solve a problem, we need to select a suitable 

algorithm to solve that problem. 

 We compare algorithms with each other which are solving the same problem, to select the best algorithm. 

 To compare algorithms, we use a set of parameters or set of elements like memory required by 

that algorithm, the execution speed of that algorithm, easy to understand, easy to implement, etc., 

 
 Generally, the performance of an algorithm depends on the following elements... 

 

 Whether that algorithm is providing the exact solution for the problem? 

 Whether it is easy to understand? 

 Whether it is easy to implement? 

 How much space (memory) it requires to solve the problem? 

 How much time it takes to solve the problem? Etc., 
 

 When we want to analyze an algorithm, we consider only the space and time required by that 

particular algorithm and we ignore all the remaining elements. 

 Based on this information, performance analysis of an algorithm can also be defined as follows... 
 

 Performance analysis of an algorithm is the process of calculating space and time required by that   

algorithm. 

 Performance analysis of an algorithm is performed by using the following measures... 
 

1. Space required to complete the task of that algorithm (Space Complexity). It includes program space 

and data space 

2. Time required to complete the task of that algorithm (Time Complexity). 



 

1.9.1. Space Complexity: 

 

 When we design an algorithm to solve a problem, it needs some computer memory to complete 

its execution. For any algorithm, memory is required for the following purposes... 

 To store program instructions.

 To store constant values.

 To store variable values.

 And for few other things like function calls, jumping statements etc,. 

Space complexity of an algorithm can be defined as follows...

 Generally, when a program is under execution it uses the computer memory for THREE reasons.  
 They are as follows... 

 

1. Instruction Space: It is the amount of memory used to store compiled version of instructions. 

2. Environmental Stack: It is the amount of memory used to store information of partially executed 

functions at the time of function call. 

3. Data Space: It is the amount of memory used to store all the variables and constants. 

To calculate the space complexity, we must know the memory required to store different datatype values 
(according to the compiler). For example, the C Programming Language compiler requires the following... 

 

1. 2 bytes to store Integer value. 

2. 4 bytes to store Floating Point value. 

3. 1 byte to store Character value. 

4. 6 (OR) 8 bytes to store double value. 
 

Consider the following piece of code... 

 

 

int square(int a) 

{ 

return a*a; 

} 

 
 In the above piece of code, it requires 2 bytes of memory to store variable 'a' and another 2 bytes of 

memory is used for return value. 

 That means, totally it requires 4 bytes of memory to complete its execution. And this 4 bytes of 

memory is fixed for any input value of 'a'.  

 This space complexity is said to be Constant Space Complexity. 

 

 

 

 

 

 

 

 

Example 1 

Total amount of computer memory required by an algorithm to complete its execution is called as space complexity of 

that algorithm. 

Note - When we want to perform analysis of an algorithm based on its Space complexity, we consider only Data Space 

and ignore Instruction Space as well as Environmental Stack. 

That means we calculate only the memory required to store Variables, Constants, Structures, etc., 

If any algorithm requires a fixed amount of space for all input values then that space complexity is said to be Constant 

Space Complexity. 



 

 

Consider the following piece of code... 

 Example 2  

int sum(int A[ ], int n) 
int sum = 0, i; 

for(i = 0; i < n; i++) 

sum = sum + A[i]; 

return sum; 

} 

In the above piece of code it requires 

'n*2' bytes of memory to store array variable 'a[ ]' 

2 bytes of memory for integer parameter 'n' 

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each) 

2 bytes of memory for return value. 
 

 That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the total 

amount of memory required depends on the value of 'n'. As 'n' value increases the space required also 

increases proportionately.  

 This type of space complexity is said to be Linear Space Complexity. 

 
 

 

1.9.2. Time Complexity 

 

 Every algorithm requires some amount of computer time to execute its instruction to perform the task. 

This computer time required is called time complexity. 

 The time complexity of an algorithm can be defined as follows... 
 

Generally, the running time of an algorithm depends upon the following... 
 

1. Whether it is running on Single processor machine or Multi processor machine. 

2. Whether it is a 32 bit machine or 64 bit machine. 

3. Read and Write speed of the machine. 

4. The amount of time required by an algorithm to 

perform Arithmetic operations, logical operations, return value and assignment operations etc., 

5. Input data 
 

 Calculating Time Complexity of an algorithm based on the system configuration is a very difficult task 
because the configuration changes from one system to another system.  

To solve this problem, we must assume a model machine with a specific configuration.  

So that, we can able to calculate generalized time complexity according to that model machine. 

If the amount of space required by an algorithm is increased with the increase of input value, then 

that space complexity is said to be Linear Space Complexity. 

The time complexity of an algorithm is the total amount of time required by an algorithm to complete 

its execution. 

Note - When we calculate time complexity of an algorithm, we consider only input data and ignore the 

remaining things, as they are machine dependent. We check only, how our program is behaving for the 

different input values to perform all the operations like Arithmetic, Logical, Return value and Assignment 

etc., 



 

 To calculate the time complexity of an algorithm, we need to define a model machine. Let us assume a 

machine with following configuration... 

 

1. It is a Single processor machine 

2. It is a 32 bit Operating System machine 

3. It performs sequential execution 

4. It requires 1 unit of time for Arithmetic and Logical operations 

5. It requires 1 unit of time for Assignment and Return value 

6. It requires 1 unit of time for Read and Write operations 

 

 Now, we calculate the time complexity of following example code by using the above-defined 

model machine... 

 Consider the following piece of code... 
 

int sum(int a, int b) 
{ 

return a+b; 

} 

 In the above sample code, it requires 1 unit of time to calculate a+b and 1 unit of time to return the 

value. That means, totally it takes 2 units of time to complete its execution.  

 And it does not change based on the input values of a and b.  

 That means for all input values, it requires the same amount of time i.e. 2 units. 
 

 

 
 

Consider the following piece of code... 
 

int sum(int A[], int n) 
{ 

int sum = 0, i; 

for(i = 0; i < n; i++) 

sum = sum + A[i]; 

return sum; 

} 

For the above code, time complexity can be calculated as follows... 

Example 1 

If any program requires a fixed amount of time for all input values then its time complexity is said to 

be Constant Time Complexity. 

Example 2 



 

 
 In above calculation 

 Cost is the amount of computer time required for a single operation in each line. 

 Repeatation is the amount of computer time required by each operation for all its repeatations. 

 Total is the amount of computer time required by each operation to execute. 

 So above code requires '4n+4' Units of computer time to complete the task. Here the exact time is not 

fixed. And it changes based on the n value. 

  If we increase the n value then the time required also increases linearly. 
 

 Totally it takes '4n+4' units of time to complete its execution and it is Linear Time Complexity. 
 

 

 

 1.10. ASYMPTOTIC NOTATIONS 

 Asymptotic Notations: 

  
 To perform analysis of an algorithm, we need to calculate the complexity of that algorithm.  

 But when we calculate the complexity of an algorithm it does not provide the exact amount of 

resource required.  

 So instead of taking the exact amount of resource, we represent that complexity in a general form 

(Notation) which produces the basic nature of that algorithm.  

 We use that general form (Notation) for analysis process. 
 

 

 For example, consider the following time complexities of two algorithms... 
 

 Algorithm 1: 5n2 + 2n + 1

 Algorithm 2 : 10n2 + 8n + 3

 

 Generally, when we analyze an algorithm, we consider the time complexity for larger values of 

input data (i.e. 'n' value). In above two time complexities, for larger value of 'n' the term '2n + 1' 

in algorithm 1 has least significance than the term '5n2', and the term '8n + 3' in algorithm 2 has 

least significance than the term '10n2'. 

 Here, for larger value of 'n' the value of most significant terms (5n2 and 10n2) is very larger than the 

value of least significant terms (2n + 1 and 8n + 3). So for larger value of 'n' we ignore the least 

If the amount of time required by an algorithm is increased with the increase of input value then that 

time complexity is said to be Linear Time Complexity. 

Asymptotic notation of an algorithm is a mathematical representation of its complexity. 

Note - In asymptotic notation, when we want to represent the complexity of an algorithm, we use only the 

most significant terms in the complexity of that algorithm and ignore least significant terms in the 

complexity of that algorithm (Here complexity can be Space Complexity or Time Complexity). 



 

significant terms to represent overall time required by an algorithm. In asymptotic notation, we use 

only the most significant terms to represent the time complexity of an algorithm. 

 

Majorly, THREE types of Asymptotic Notations 
 

1. Big - Oh (O) 

2. Big - Omega (Ω) 

3. Big - Theta (Θ) 

 

1. Big - Oh Notation (O): 

 Big - Oh notation is used to define the upper bound of an algorithm in terms of Time 

Complexity. That means Big - Oh notation always indicates the maximum time required by an 

algorithm for all input values.  

 That means Big - Oh notation describes the worst case of an algorithm time   complexity. Big 

- Oh Notation can be defined as follows... 
 

 

 In above graph after a particular input value n0, always C g(n) is greater than f(n) which indicates the 
algorithm's upper bound. 

 Example: 
Consider the following f(n) and g(n)... 

f(n) = 3n + 2 

g(n) = n 

If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C g(n) for all values of C > 0 and n0>= 1 

f(n) <= C g(n) 

⇒3n + 2 <= C n 

Above condition is always TRUE for all values of C = 4 and n >= 2. 
By using Big - Oh notation we can represent the time complexity as follows... 

3n + 2 = O(n) 

Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If f(n) 

<= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we can represent f(n) as O(g(n)). 

f(n) = O(g(n)) 

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis 

and time required is on Y-Axis 



 

2. Big - Omege Notation (Ω): 

 Big - Omega notation is used to define the lower bound of an algorithm in terms of Time 

Complexity.  

 That means Big-Omega notation always indicates the minimum time required by an algorithm for all 

input values. That means Big-Omega notation describes the best case of an algorithm time 

complexity.  

 Big - Omega Notation can be defined as follows... 
 

f(n) = Ω(g(n)) 

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis and 

time required is on Y-Axis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In above graph after a particular input value n0, always C g(n) is less than f(n) which indicates 

the algorithm's lower bound. 

 Example: 

Consider the following f(n) and g(n)... 

f(n) = 3n + 2 

g(n) = n 

If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) >= C g(n) for all values of C > 0 and n0>= 1 

f(n) >= C g(n) 

⇒3n + 2 >= C n 

Above condition is always TRUE for all values of C = 1 and n >= 1. 
By using Big - Omega notation we can represent the time complexity as follows... 

3n + 2 = Ω(n) 

Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If f(n) 

>= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we can represent f(n) as Ω(g(n)). 



 

3. Big - Theta Notation (Θ): 

 Big - Theta notation is used to define the average bound of an algorithm in terms of Time 

Complexity.  

 That means Big - Theta notation always indicates the average time required by an algorithm for all input 

values.  

 That means Big - Theta notation describes the average case of an algorithm time complexity. Big - 

Theta Notation can be defined as follows... 
 

f(n) = Θ(g(n)) 

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis and 

time required is on Y-Axis 
 

Consider the following f(n) and g(n)... 
f(n) = 3n + 2 

g(n) = n 

If we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n) <= f(n) <= C2 g(n) for all values of C1 > 

0, C2 > 0 and n0>= 1 

C1 g(n) <= f(n) <= C2 g(n) 

⇒C1 n <= 3n + 2 <= C2 n 

Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n >= 2. 

By using Big - Theta notation we can represent the time compexity as follows... 

3n + 2 = Θ(n) 

Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If 

C1 g(n) <= f(n) <= C2 g(n) for all n >= n0, C1 > 0, C2 > 0 and n0 >= 1. Then we can represent f(n) as 

Θ(g(n)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is 

greater than f(n) which indicates the algorithm's average bound. 

Example: 



 

Little oh-o notation: 

 A theoretical measure of the execution of an algorithm, usually the time or memory needed, given the 

problem size n, which is usually the number of items. 

  Informally, saying some equation f(n) = o(g(n)) means f(n) becomes insignificant relative to g(n) as n 

approaches infinity. The notation is read, "f of n is little oh of g of n". 

 Formal Definition: f (n) = o (g (n)) means for all c > 0 there exists some k > 0 such that 0 ≤ f (n) < cg (n) 

for all n ≥ k. The value of k must not depend on n, but may depend on c 

 As an example, 3n + 4 is o (n²) since for any c we can choose k > (3+ √ (9+16c))/2c. 3n + 4 is not o (n). 

 o (f(n)) is an upper bound. 

 

Littlee Omega:ω 

 A theoretical measure of the execution of an algorithm, usually the time or memory needed, given the 

problem size n, which is usually the number of items.  

 Informally, saying some equation f(n) = ω (g(n)) means g(n) becomes insignificant relative to f(n) as n 

goes to infinity. 

 Formal Definition: f(n) = ω (g(n)) means that for any positive constant c, there exists a constant k, such 

that 0 ≤ cg(n) < f(n) for all n ≥ k. The value of k must not depend on n, but may depend on c. 

 

  
 1.11. RANDOMIZED ALGORITHMS 

  
 Basics of Probability Theory: 

 

 Probability theory has the goal of characterizing the outcomes of natural or conceptual “experiments”. 

 Examples of such experiments include tossing a coin ten times, rolling a die three times, playing a 

lottery, gambling, picking a ball form an urn containing white and red balls, and so on. 

 Each possible outcome of an experiment is called a sample point and the set of all possible outcomes is 

known as the sample space S.    

 Assume that S is finite (such a sample space is called a discrete sample space). 

  An event E is a subset of the sample space S.  

 If the sample space consists of n sample points, then there are 2n possible events. 

 Example: Tossing three coins when a coin is tossed, there are two possible outcomes: Heads (H) and 

Tails (T). Consider the experiment of throwing three coins.   There are eight possible outcomes: HHH, 

HHT, HTH, HTT, THH, THT, TTH and TTT. Each such outcome is a sample point.   The Sets {HHT, 

HTT, TTT}, {HHH, TTT} and { } are three possible events.    

 The third event has no sample points and is the empty set. For this experiment there are 28 possible 

events. 

 

  
  
  
  
  
  
  
  
  
  
  

https://xlinux.nist.gov/dads/HTML/algorithm.html
https://xlinux.nist.gov/dads/HTML/algorithm.html


 

  
  
  

  
 

 

 



 

 

 

 

 
 

 

 



 

 

 

 

 
 

 

 



 

 

 Randomized Algorithms : An Informal Description: 
 

 A randomized algorithm is one that makes use of a randomizer (such as a random number generator). 

 Some of the decisions made in the algorithm depend on the output of the randomizer.  

 The output of any randomizer might differ in an unpredictable way from run to run, the output of a 

randomized algorithm could also differ from run to run, and the output of a randomized algorithm 

could also differ from run to run for the same input.  

 The execution time of a randomized algorithm could also vary from run to run for the same input. 

 Randomized algorithms can be categorized into two classes:  

 Las Vegas algorithms 

 Monte Carlo algorithms 

 

Las Vegas Algorithms: 

 

 The first is algorithms that always produce the same (correct) output for the same input. These are 

called Las Vegas algorithms.  

 The execution time of a  Las vegas algorithm depends on the output of the randomizer.  

 If lucky, the algorithm might terminate fast, and if not it might run for a longer period of time. 

 In general the execution time of a Las Vegas algorithm is characterized as a random variable. 

 

Monte Carlo Algorithms: 

 

 The second is algorithms whose outputs might differ from run to run (for the same input).  

 These are called Monte Carlo algorithms.  

 Consider any problem for which there are only two possible answers, say, yes and no.  

 If a Monte Carlo algorithm is employed to solve such a problem then the algorithm might give incorrect 

answers depending on the output of the randomizer.  

 We require that the probability of an incorrect answer from a Monte Carlo algorithm be low. 



 

 
 

 

 

 

 



 

 
 

 

 

 

 



 

 
 

Advantage and Disadvantage for Randomized Algorithm: 

 There are two major advantage of randomize algorithm 

 Those algorithms are simple to implement. 

 These algorithms are many time efficient than traditional algorithm. 

 However randomized algorithm may have some drawbacks: 

 The small degree of error may be dangerous for some applications. 

 It is not always possible to obtain better results using randomized algorithm. 



 

DESIGN AND ANALYSIS OF ALGORITHMS 

 

UNIT – II 

 

SEARCH AND SORTING: General Method – Binary Search – Recurrence Equation for Divide and 

Conquer –Finding the Maximum and Minimum–– Merge Sort – Quick Sort – Performance Measurement 

– Randomized Sorting Algorithm – Selection Sort – A Worst Case Optimal Algorithm – Implementation 

of Select2 – Stassen’s Matrix Multiplications.. 

 

2.0 DIVIDE AND CONQUER INTRODUCTION 

 

 Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a 

 dispute on a huge input, break the input into minor pieces, decide the problem on each of the small pieces, and 

then merge the piecewise solutions into a global solution.  

 This mechanism of solving the problem is called the Divide & Conquer Strategy. 

 

 Divide and Conquer algorithm consists of a dispute using the following three steps. 

 

1. Divide the original problem into a set of sub problems. 

2. Conquer: Solve every sub problem individually, recursively. 

3. Combine: Put together the solutions of the sub problems to get the solution to the whole 

                  problem. 

 

2.1 GENERAL METHOD 

 

 In divide and conquer approach, a problem is divided into smaller problems, then the smaller 

 problems are solved independently, and finally the solutions of smaller problems are combined into a solution 

for the large problem. 

 

 Generally, divide-and-conquer algorithms have three parts – 

 

 Divide the problem into a number of sub-problems that are smaller instances of the same problem. 

 Conquer the sub-problems by solving them recursively. If they are small enough, solve the sub-

problems as base cases. 

 Combine the solutions to the sub-problems into the solution for the original problem. 

 

 
 



 

 Traditionally, routines in which the text contains at least two recursive calls are called divide and 

conquer algorithms, while routines whose text contains only one recursive call are not.  

 Divide–and–conquer is a very powerful use of recursion. 

 

Control Abstraction of Divide and Conquer  

 

 A control abstraction is a procedure whose flow of control is clear but whose primary operations are 

specified by other procedures whose precise meanings are left undefined.  

 The control abstraction for divide and conquer technique is DANDC(P), where P is the problem to be 

solved. 

 Algorithm DANDC (P)  

{  

  if SMALL (P) then  return S (p);  

 else  

{   

  divide p into smaller instances p1, p2, …. Pk, 1k;    

  Apply DANDC to each of these sub problems; 

  return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));  

 }  

}  

 

 SMALL (P) is a Boolean valued function which determines whether the input size is small enough so 

that the answer can be computed without splitting.  

 If this is so function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These sub 

problems p1, p2, . . . , pk are solved by recursive application of DANDC. 

 If the sizes of the two sub problems are approximately equal then the computing time of DANDC is: 

       

 

 

 

 

 

Where, T (n) is the time for DANDC on ‘n’ inputs  
 g (n) is the time to complete the answer directly for small inputs and  

 f (n) is the time for Divide and Combine 

 

Fundamental of Divide & Conquer Strategy 

 

 There are two fundamental of Divide & Conquer Strategy: 

1. Relational Formula 

2. Stopping Condition 

 

1. Relational Formula: It is the formula that we generate from the given technique. After generation of 

Formula we apply D&C Strategy, i.e. we break the problem recursively & solve the broken subproblems. 

 

2. Stopping Condition: When we break the problem using Divide & Conquer Strategy, then we need to 

know that for how much time, we need to apply divide & Conquer. So the condition where the need to 

stop our recursion steps of D&C is called as Stopping Condition. 

 

 

T  (n) = 
 g (n) n small 


2 T (n/2) f (n) otherwise  



Examples:  

The specific computer algorithms are based on the Divide & Conquer approach: 

1. Maximum and Minimum Problem 

2. Binary Search 

3. Sorting (merge sort, quick sort) 

4. Tower of Hanoi. 

There are various ways available to solve any computer problem, but the mentioned are a good example 

of divide and conquer approach. 

Advantage of Divide and Conquer Approach 

 The difficult problem can be solved easily. 

 It divides the entire problem into subproblems  

 Efficiently uses cache memory without occupying much space 

 Reduces time complexity of the problem 

 Solving difficult problems 

 Algorithm efficiency 

 Parallelism 

 Memory access 

Disadvantage of Divide and Conquer Approach 

 It involves recursion which is sometimes slow 

 Efficiency depends on the implementation of logic 

 It may crash the system if the recursion is performed rigorously. 

 Overhead 

 Complexity 

 Difficulty of implementation 

 Memory limitations 

 Suboptimal solutions 

 Difficulty in parallelization 

Applications of Divide and Conquer Approach 

Following algorithms are based on the concept of the Divide and Conquer Technique: 

1. Binary Search: The binary search algorithm is a searching algorithm, which is also called a half- 

interval search or logarithmic search. It works by comparing the target value with the middle 

element existing in a sorted array. After making the comparison, if the value differs, then the half 

that cannot contain the target will eventually eliminate, followed by continuing the search on the 

other half. We will again consider the middle element and compare it with the target value. The 

process keeps on repeating until the target value is met. If we found the other half to be empty 

after ending the search, then it can be concluded that the target is not present in the array. 

2. Quicksort: It is the most efficient sorting algorithm, which is also known as partition-exchange 

sort. It starts by selecting a pivot value from an array followed by dividing the rest of the array 

elements into two sub-arrays. The partition is made by comparing each of the elements with the 

pivot value. It compares whether the element holds a greater value or lesser value than the pivot 



and then sort the arrays recursively. 

3. Merge Sort: It is a sorting algorithm that sorts an array by making comparisons. It starts by 

dividing an array into sub-array and then recursively sorts each of them. After the sorting is done, 

it merges them back. 

4. Strassen's Algorithm: It is an algorithm for matrix multiplication, which is named after Volker 

Strassen. It has proven to be much faster than the traditional algorithm when works on large  

matrices. 

 

Time Complexity: 
 

 The time complexity of the divide and conquer algorithm to find the maximum and minimum element in 

an array is O(n). 

 

Space Complexity: 

 The space complexity of the divide and conquer algorithm to find the maximum and minimum element 

in an array is O(log(n)).  

 

 

2.3 BINARY SEARCH 

 

 If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn .  

 When we are  given a element ‘x’, binary search is used to find the corresponding element from the list. 

In case ‘x’ is present, we have to determine a value ‘j’ such that a[j] = x (successful search).  

 If ‘x’ is not in the list then j is to set to zero (un successful search). 

 

 In Binary search we jump into the middle of the file, where we find key a[mid], and compare ‘x’ 

            with a[mid].  

 If x = a[mid] then the desired record has been found. If x < a[mid] then ‘x’ must be in that portion of the 

file that precedes a[mid], if there at all.  

 Similarly, if a[mid] > x, then further search is only necessary in that past of the file which follows 

a[mid].  

 If we use recursive procedure of finding the middle key a[mid] of the un-searched portion of a file, then 

every un-successful comparison of ‘x’ with a[mid] will eliminate roughly half the un-searched portion 

from consideration. 

 Since the array size is roughly halved often each comparison between ‘x’ and a[mid], and since an 

 array of length ‘n’ can be halved only about log 2n times before reaching a trivial length, the worst case 

complexity of Binary search is about log2n 

 

Algorithm for Binary Search 

 

Algorithm BINSRCH (a, n, x) 

   // array a(1 : n) of elements in increasing order, n > 0, 
  // determine whether ‘x’ is present, and if so, set j such that x = a(j)  
 // else return j 

{ 

   low :=1 ; high :=n ; 
         while (low < high) do 
       { 
         mid :=[(low + high)/2];  
         if (x < a [mid]) then high:=mid – 1; 
        else if (x > a [mid]) then low:= mid + 1 
        else return mid; 

      }  
        return 0; 



} 

 

 low and high are integer variables such that each time through the loop either ‘x’ is found or low is 

increased by at least one or high is decreased by at least one.  

 Thus we have two sequences of integers approaching each other and eventually low will become greater 

than high causing termination in a finite number of steps if ‘x’ is not present 

 

Example for Binary Search 

 

Let us illustrate binary search on the following 9 elements: 

Index 1 2 3 4 5 6 7 8 9 
Elements -15 -6 0 7 9 23 54 82 101 

 
The number of comparisons required for searching different elements is as follows: 

 
1. Searching for x = 101 low high mid 

 1 9  5 
 6 9  7 
 8 9  8 

 9 9     9 
    found 

Number of comparisons = 4     

2. Searching for x = 82 low high mid 

 1 9  5 
 6 9  7 
 8 9  8 

    found 

Number of comparisons =3       

3. Searching for x = 42 low high mid 

 1 9  5 
 6 9  7 
 6 6  6 

 7 6 not found 

Number of comparisons = 4 

 

     

4. Searching for x = -14 low high mid 

 1 9  5 

 1 4  2 
 1 1  1 
 2 1 not found 

Number of comparisons = 3     

 

Efficiency of Binary Search 

 

Continuing in this manner the number of element comparisons needed to find each of nine elements is: 
 

Index 1 2 3 4 5 6 7 8 9 
Elements -15 -6 0 7 9 23 54 82 101 

Comparisons 3 2 3 4 1 3 2 3 4 

 



 No element requires more than 4 comparisons to be found. Summing the comparisons needed to find all 

nine items and dividing by 9, yielding 25/9 or approximately 2.77 comparisons per successful search on 

the average. 

 There are ten possible ways that an un-successful search may terminate depending upon the  value of x. 

 

 If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or a[7] < x < a[8] the 

 algorithm requires 3 element comparisons to determine that ‘x’ is not present. For all of the remaining 

possibilities BINSRCH requires 4 element comparisons. Thus the average number of element comparisons for 

an unsuccessful search is: 

(3+3+3+4+4+3+3+3+4+4)/10=34/10=3.4 

 

 The time complexity for a successful search is O(log n) and for an unsuccessful search is 

Θ(logn). 

 

Advantages of Binary Search Technique: 

 

o BST is fast in insertion and deletion when balanced.  

o It is fast with a time complexity of O(log n).  

o BST is also for fast searching, with a time complexity of O(log n) for most operations. 

o BST is efficient. 

Complexity: 

 

 The time complexity of the binary search algorithm is O(log n).  

 The best-case time complexity would be O(1) when the central index would directly match the desired 

value. Binary search worst case differs from that.  

 The worst-case scenario could be the values at either extremity of the list or values not in the list. 

Limitations: 

 

 The recursive method uses stack space. 

 Binary search is error-prone.  

 Off-by-one errors: While determining the boundary of the next interval, there might be overlapping 

errors. 

 Caching is poor. 

Time Complexity 

Case Time Complexity 

Best Case O(1) 

Average Case O(logn) 

Worst Case O(logn) 

 

Space Complexity 

Space Complexity O(1) 

 

 



       



 
 



 
 

 
 

 



 

 

2.4 FINDING THE MAXIMUM AND MINIMUM 

 
 

 

 

 

 

 

 

 



 

 

 





 
 

 

 

 

 

 

 

 

 



 

Example of Finding the Maximum and Minimum 

 

 
 

 

Efficiency of Finding the Maximum and Minimum 

 



 
 

Advantages: 

 It provides an optimal move for the player assuming that opponent is also playing optimally.  

 Mini-Max algorithm uses recursion to search through the game-tree.  

 Min-Max algorithm is mostly used for game playing in AI.  

 Such as Chess, Checkers, tic-tac-toe, go, and various tow-players game. 

Limitations 

 Because of the huge branching factor, the process of reaching the goal is slower. 

 Evaluation and search of all possible nodes and branches degrades the performance and efficiency of the 

engine. 

 Both the players have too many choices to decide from. 

 

 

 

 



Complexity 

 Time complexity- Min-Max algorithm is O(bm), where b is branching factor of the game-tree, and m 

is the maximum depth of the tree.  i.e O(n) 

 Space Complexity- Space complexity of Mini-max algorithm is also similar to DFS which is O(bm). 

 

2.4 Merge Sort 

 

 This is a simple and very efficient algorithm for sorting a list of numbers, called MergeSort. We are 

given an sequence of n numbers A, which we will assume is stored in an array A[1 ...n].  

 The objective is to output a permutation of this sequence, sorted in increasing order. This is normally 

done by permuting the elements within the array A.  

The major elements of the Merge Sort algorithm.  

 Divide: Split A down the middle into two subsequences, each of size roughly n/2.  

 Conquer: Sort each subsequence (by calling MergeSort recursively on each).  

 Combine: Merge the two sorted subsequences into a single sorted list.  

 The dividing process ends when we have split the subsequences down to a single item. A sequence of 

 length one is trivially sorted.  

 The key operation where all the work is done is in the combine stage, which merges together two sorted  

lists into a single sorted list. It turns out that the merging process is quite easy to implement. 

 

In merge sort we follow the following steps: 

 

 We take a variable p and store the starting index of our array in this. And we take another variable r and 

store the last index of array in it. 

 Then we find the middle of the array using the formula 

(p + r)/2 and mark the middle index as q, and break the array into two subarrays, from p to q and from  

q + 1 to r index. 

 Then we divide these 2 subarrays again, just like we divided our main array and this continues. 

 Once we have divided the main array into subarrays with single elements, then we start merging the 

subarrays. 

 

Algorithm for Merge Sort 

 

Algorithm MergeSort(array A, int p, int r)  

{  

   if (p < r)  

   {                                           // we have at least 2 items  

     q := (p + r)/2 ; 

      MergeSort(A, p, q)  ;      // sort A[p..q]  

      MergeSort(A, q+1, r);   // sort A[q+1..r]  

      Merge(A, p, q, r);        // merge everything together 

   } 

 }  

 

Algorithm for Merging 2 Sorted sub arrays 

 

Algorithm Merge(array A, int p, int q, int r)  

{                                                     // merges A[p..q] with A[q+1..r] 

  array B[p..r]; 

         i = k = p;                                   // initialize pointers  

  j = q+1; 

  while (i <= q and j <= r) 

 {                                                // while both subarrays are nonempty 

   if (A[i] <= A[j]) 



    B[k++] = A[i                     // copy from left subarray  

   else 

   B[k++] = A[j                   // copy from right subarray  

 } 

  while (i <= q)  

       B[k++]:= A[i++];        // copy any leftover to B  

 while (j <= r)  

 B[k++] := A[j++]; 

 for i = p to r do  

 A[i] := B[i] ;           // copy B back to  

} 

 

Example for Merge Sort 

 

Let's consider an array with values {14, 7, 3, 12, 9, 11, 6, 12} 

Below, we have a pictorial representation of how merge sort will sort the given array. 

 

 

 
 

 

 

 

 

 



Representing this in O notation: 

 

T(n) = O(n log n) 

 We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’ is not a power of 2.  

The answer turns out to be almost identical. 

 Although merge sort’s running time is O(n log n), it is hardly ever used for main memory sorts. The 

 main problem is that merging two sorted lists requires linear extra memory and the additional work spent 

copying to the temporary array and back, throughout the algorithm, has the effect of slowing down the sort 

considerably. The Best and worst case time complexity of Merge sort is O(n log n). 
 

Time Complexity of merge sort 

           

 

 

 

Advantage for Merge Sort 

 

 It is quicker for larger lists because unlike insertion and bubble sort it doesnt go through the whole list 

seveal times. 

 It has a consistent running time, carries out different bits with similar  times in a stage. 

 

Disadvantage for Merge Sort 

 

 Slower comparative to the other sort algorithms for smaller tasks. 

 Goes through the whole process even i he list is sorted (just like insertion and bubble sort?) 

 Uses more memory space to store the sub elements of the initial split list. 

 

Complexity Analysis of Merge Sort: 

 

 Time Complexity: O(N log(N)),  Merge Sort is a recursive algorithm and time complexity can be 

expressed as following recurrence relation.  

 T(n) = 2T(n/2) + θ(n) 

 Auxiliary Space: O(N), In merge sort all elements are copied into an auxiliary array. So N auxiliary 

space is required for merge sort. 

Advantages of Merge Sort: 

 Stability: Merge sort is a stable sorting algorithm,  

 Guaranteed worst-case performance: Merge sort has a worst-case time complexity of O(N logN), which 

means it performs well even on large datasets. 

 Parallelizable: Merge sort is a naturally parallelizable algorithm, which means it can be easily 

parallelized to take advantage of multiple processors or threads. 

Drawbacks of Merge Sort: 

 Space complexity: Merge sort requires additional memory to store the merged sub-arrays during the 

sorting process.  

 Not in-place: Merge sort is not an in-place sorting algorithm, which means it requires additional memory 

to store the sorted data.  

 Not always optimal for small datasets: For small datasets, Merge sort has a higher time complexity than 

some other sorting algorithms 
 

 

 

Best Case Average   Case Worst  Case 

O(n log n) O(n log n) O(n log n) 



Applications of Merge Sort: 

 Sorting large datasets: Merge sort is particularly well-suited for sorting large datasets due to its 

guaranteed worst-case time complexity of O(n log n). 

 External sorting: Merge sort is commonly used in external sorting, where the data to be sorted is too 

large to fit into memory. 

 Custom sorting: Merge sort can be adapted to handle different input distributions, such as partially 

sorted, nearly sorted, or completely unsorted data. 

Time Complexity 

 Merge Sort is a recursive algorithm and time complexity can be expressed as following recurrence 

relation. T(n) = 2T(n/2) + O(n) The solution of the above recurrence is O(nLogn) 

 

Space Complexity: 

 The space complexity of Merge sort is O(n). 

 This means that this algorithm takes a lot of space and may slower down operations for the last data sets. 

 

 

2.5 QUICK SORT 

 

 
 





 

 
 

 

 



 



 
 



 

 
 

 

 

 



Example for Quick Sort 

 

 
 

 



 
 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 



 
 



 
 

 



 
 



 
 



 
 

 

Advantage of Quick Sort 

 

 



 

Disadvantage of Quick Sort 

 

 
 

 

 
 



 
 

Randomized Quicksort works: 

 Choose Pivot Randomly select an element from the array to serve as the pivot element 

 Partitioning: Rearrange the elements in the array so that all elements less than the pivot are to its left and 

all elements greater than the pivot are to its right.  The pivot is now in its final sorted position. 

 Recursive sorting: Recursively apply the same process to the sub arrays on the left and right of the pivot 

 Combine: Once all subarrays are sorted the entire array will be sorted. 

Uses of Random Algorithm: 

 Randomized algorithms have various applications in computer science and mathematics, such 

as cryptography, data structures, machine learning, optimization, and computational geometry. 

Need for Randomized Algorithm 

 Improved Efficiency:  

 Complex Problems can be Handled Effectively: 

 Worst-Case Scenarios can be avoided 

 Cryptography 



2.6 SELECTION SORT 

 

 
 

 

 

 

 



 
 

 

 

 



 
 

 

 

Example for Selection Sort 

 

Example 1: 

Unsorted list: 5 2 1 4 3 

 

1st iteration: 

Smallest = 5 

2 < 5, smallest = 2 

1 < 2, smallest = 1 

4 > 1, smallest = 1 

3 > 1, smallest = 1 

Swap 5 and 1 1 2 5 4 3 

 

2nd iteration: 

Smallest = 2 

2 < 5, smallest = 2 

2 < 4, smallest = 2 

2 < 3, smallest = 2 



No Swap 1 2 5 4 3 

 

3rd iteration: 

Smallest = 5 

4 < 5, smallest = 4 

3 < 4, smallest = 3 

Swap 5 and 3 1 2 3 4 5 

 

4th iteration: 

Smallest = 4 

4 < 5, smallest = 4 

No Swap 1 2 3 4 5 

 

Finally, 

the sorted list is 1 2 3 4 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Examp1e 2: 

 

 
 

 

Timing Complexity for Selection Sort 

 

 Selection Sort requires two nested for loops to complete itself, one for loop is in the function selection 

Sort, and inside the first loop we are making a call to another function indexOfMinimum, which has the 

second(inner) for loop. 

 Hence for a given input size of n, following will be the time and space complexity for selection sort 

algorithm: 



 Worst Case Time Complexity [ Big-O ]: O(n2) 

 Best Case Time Complexity [Big-omega]: O(n2) 

 Average Time Complexity [Big-theta]: O(n2) 

 

 

Advantage of Selection Sort 

 

 Selection sort uses minimum number of swap operations O(n) among all the sorting algorithms. 

 

 

Disadvantage of Selection Sort 

 

 Selection sort is not a very efficient algorithm when data sets are large. 

 This is indicated by the average and worst case complexities. 

 

2.8 A WORST CASE OPTIMAL ALGORITHM - IMPLEMENTATION OF SELECT2 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

2.9. STASSEN’S MATRIX MULTIPLICATIONS 

 
 

 

 

 



 
 

Algorithm Stassen’s Matrix Multiplications 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Example of  Stassen’s Matrix Multiplications 

 

Example 1: 

 

 
 

 

 



 



 
 



 
 



 
 



 
 

Example 2: 

 

 
 

 



 
 

Efficiency of Strssen’s matrix multiplication 

 
 

 

 

 



 
 

 



 
 

 

 

 



 

DESIGN AND ANALYSIS OF ALGORITHMS 

UNIT III 

The General Method – Container Loading – Knapsack Problem – Tree Vertex Splitting – Job Sequencing 

with Deadlines – Minimum Cost Spanning Trees – Prim’s Algorithm – Kruskal’s Algorithm – An optimal 

Randomized Algorithm – Optimal Storage on Tapes – Optimal Merge Pattern – Single Source Shortest 

Paths. 

 

3.1. GREEDY ALGORITHM GENERAL METHOD 

 

 The Greedy method is the simplest and straightforward approach. It is not an algorithm, but it is a 

technique.  

 The main function of this approach is that the decision is taken on the basis of the currently available 

information.  

 Whatever the current information is present, the decision is made without worrying about the effect 

of the current decision in future. 

 This technique is basically used to determine the feasible solution that may or may not be optimal. 

The feasible solution is a subset that satisfies the given criteria. 

  The optimal solution is the solution which is the best and the most favorable solution in the subset. 

 In the case of feasible, if more than one solution satisfies the given criteria then those solutions will 

be considered as the feasible, whereas the optimal solution is the best solution among all the 

solutions. 

Characteristics of Greedy method: 

 

 The following are the characteristics of a greedy method: 

o To construct the solution in an optimal way, this algorithm creates two sets where one set 

contains all the chosen items, and another set contains the rejected items. 

o A Greedy algorithm makes good local choices in the hope that the solution should be either 

feasible or optimal. 

o  

Components of Greedy Algorithm: 

 

 The components that can be used in the greedy algorithm are: 

 

o Candidate set: A solution that is created from the set is known as a candidate set. 

o Selection function: This function is used to choose the candidate or subset which can be added in 

the solution. 

o Feasibility function: A function that is used to determine whether the candidate or subset 

can be used to contribute to the solution or not. 

o Objective function: A function is used to assign the value to the solution or the partial solution. 

o Solution function: This function is used to intimate whether the complete function has been 

reached or not. 

 

Applications of Greedy Algorithm: 

o It is used in finding the shortest path. 

o It is used to find the minimum spanning tree using the prim's algorithm or the Kruskal's algorithm. 

o It is used in job sequencing with a deadline. 

o This algorithm is also used to solve the fractional knapsack problem. 



 

 

Types and Example: 

 Travelling Salesman Problem 

 Prim's Minimal Spanning Tree Algorithm 

 Kruskal's Minimal Spanning Tree Algorithm 

 Dijkstra's Minimal Spanning Tree Algorithm 

 Graph - Map Coloring 

 Knapsack Problem 

 Job Scheduling Problem 

Example of Greedy Algorithm 

 

 Problem Statement:  Find the best route to reach the destination city from the given starting point 

using a greedy method. 

 

Output using Greedy Method: 

 

1. Starting Location Connecting 3 cities it contains 15, 10, 25 and Choosing Min Value 10  

2. After reached the vertex 10 it contains the weighted values of 20 and 2.  2 is the Min. value, 

choose 2 and move to. 

3. Finally choose 7 and reached to the destination. So minimum cost of value to travel from source to 

destination is 10+ 2 + 7 = 19 

 

 

 

 



 

3.2. CONTAINER LOADING PROBLEM 

 

Container Loading Problem: 

 The basic Container Loading Problem can be defined as the problem of placing a set of boxes into the 

container respecting the geometric constraints: the boxes cannot overlap and cannot exceed the 

dimensions of the container. 

 The greedy algorithm constructs the loading plan of a single container layer by layer from the bottom 

up. At the initial stage, the list of available surfaces contains only the initial surface of size L x W with 

its initial position at height 0. 

 

Types of Container Units and Designs for Shipping Cargo: 

 Dry storage container. 

 Flat rack container. 

 Open top container. 

 Tunnel container. 

 Open side storage container. 

 Double doors container. 

 Refrigerated ISO containers. 

 Insulated or thermal containers. 

 

Diagrammatic Representation of Container Loading: 

 

 
 

Container loading problem is the problem of loading a subset of rectangular boxes into a rectangular container 

of fixed dimensions such that the volume of the packed boxes is maximized. 

Problem: 

 A largest ship is to be loaded with cargo is containerized and all containers are same size. 

 Here  

  Capacity of the container is C and max. No. of containers loaded in the cargo. 

   

Check the constraint and formula is = ∑ 𝑤𝑖, 𝑥𝑖 < 𝐶𝑛
𝑖=0  

    xi = 1 = it means container loaded in the cargo 

    xi = 0 = it means container not loaded in the cargo 

    Wi = Container Weighted  

 

Now check the condition 

∑𝑤𝑖, 𝑥𝑖 ≤ 𝐶

𝑛

𝑖=0

 

Take the problem 

 Cargo contains 8 container i.e =  {W1,  W2,  W3,  W4, W5,  W6, W7, W8} 

 Containers contains weighted = {100, 200,50, 90, 150, 50,20, 80} 



 

So W1=100, W2 = 200, W3=50, W4=90, W5=150, W6=50, W7=20 & W8=80 

The total capacity of cargo is 400 i.e, C=400  

 

Stage 1: Initially is the weighted in ascending order. 

{Container = Weighted} 

 {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

 Now you can take the solution: 

  Solution set = {0, 0, 0, 0, 0, 0, 0, 0} 

  Apply into formula   

 𝑤𝑖, 𝑥𝑖 ≤ 𝐶  -> check the constraint 

20 * 1 ≤ 400 now condition is satisfied 

  Set the solution = {0, 0, 0, 0, 0, 0, 1, 0} 

 

Stage 2: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

  20 + 50 ≤ 400  

70 ≤ 400 condition is satisfied 

   Set the solution = {0, 0, 1, 0, 0, 0, 1, 0} 

 

Stage 3: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

  70+ 50 ≤ 400  

120 ≤ 400 condition is satisfied 

   Set the solution = {0, 0, 1, 0, 0, 1, 1, 0} 

 

Stage 4: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

  120+ 80 ≤ 400  

200 ≤ 400 condition is satisfied 

   Set the solution = {0, 0, 1, 0, 0, 1, 1, 1} 

 

Stage 5: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

  200+ 90 ≤ 400  

290 ≤ 400 condition is satisfied 

   Set the solution = {0, 0, 1, 1, 0, 1, 1, 1} 

 

Stage 6: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

  290+ 100 ≤ 400  

390 ≤ 400 condition is satisfied 

   Set the solution = {1, 0, 1, 1, 0, 1, 1, 1} 

 

Stage 7: {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

   

390 + 150 ≤ 400  

540 ≤ 400 condition is Not Satisfied 

  Set the solution = {1, 0, 1, 1, 0, 1, 1, 1} 

  

 Therefore container 5 is 540 ≤ 400 the condition is not satisfied and it cannot be loaded in the cargo ship. 

**Finally the container {7, 3, 6, 8, 4 and 1} = {20, 50, 50, 80, 90, 100} loaded in the cargo ship. 

**Container {5 and 2 } i.e Weighted ={150 and 200} Not loaded in the container cargo. 

 



 

 



 

 The value or profit obtained by putting the items into the knapsack is maximum. 

 And the weight limit of the knapsack does not exceed. 

 3.3. KNAPSACK PROBLEM 

  

 Fractional Knapsack problem or Knapsack Problem in Greedy method. There are n objects and a 

knapsack or bag.  Object i has a weight wi and the knapsack has a capacity m.  

 If a fraction xi,  

of object i is placed into the knapsack, then a profit of pixi is earned. The objective is to obtain a filling of 

the knapsack that maximizes the total profit earned. Since the knapsack capacity is m, we require the total 

weight of all chosen objects to be at most m. 

 

 A knapsack (kind of shoulder bag) with limited weight capacity. 

 Few items each having some weight and value. 

The problem states- 

 Which items should be placed into the knapsack such that- 

 
Fractional Knapsack Problem- 

Problem- 

For the given set of items and knapsack capacity = 60 kg, find the optimal solution for the fractional 

knapsack problem making use of greedy approach. 



 

 

Item 

 

Weight 

 

Value 

1 5 30 

2 10 40 

3 15 45 

4 22 77 

5 25 90 

 

OR 

Find the optimal solution for the fractional knapsack problem making use of greedy approach. Consider- 

n = 5 

w = 60 kg 

(w1, w2, w3, w4, w5) = (5, 10, 15, 22, 25) 

(b1, b2, b3, b4, b5) = (30, 40, 45, 77, 90) 

OR 

A thief enters a house for robbing it. He can carry a maximal weight of 60 kg into his bag. There are 5 items 

in the house with the following weights and values. What items should thief take if he can even take the 

fraction of any item with him? 

 

 

 

Item Weight Value 

1 5 30 

2 10 40 

3 15 45 

4 22 77 

5 25 90 

 

Solution- 

Step-01: 

Compute the value / weight ratio for each item- 



 

Items Weight Value Ratio 

1 5 30 6 

2 10 40 4 

3 15 45 3 

4 22 77 3.5 

5 25 90 3.6 

 

Step-02: 

Sort all the items in decreasing order of their value / weight ratio- 

 

 

 
I1 I2 I5 I4 I3 

(6) (4) (3.6) (3.5) (3) 

 

Step-03: 

Start filling the knapsack by putting the items into it one by one. 

 

Knapsack 

Weight 

Items 

in Knapsack 

 

Cost 

60 Ø 0 

55 

 

45 

I1 

 

I1, I2 

30 

 

70 

20 I1, I2, I5 160 

 
Now, 

 Knapsack weight left to be filled is 20 kg but item-4 has a weight of 22 kg. 

 Since in fractional knapsack problem, even the fraction of any item can be taken. 

 So, knapsack will contain the following items- 

< I1 , I2 , I5 , (20/22) I4 > 

Total cost of the knapsack 

= 160 + (20/27) x 77 

= 160 + 70 

= 230 units 



 

Important Note- 

Had the problem been a 0/1 knapsack problem, knapsack would contain the following items- 

< I1 , I2 , I5 > 

The knapsack’s total cost would be 160 units. 

 
A pseudo-code for solving knapsack problems using the greedy method is; 
greedy fractional-knapsack (P[1…n], W[1…n], X[1..n]. M) 
/*P[1…n] and W[1…n] contain the profit and weight of the n-objects ordered such that X[1…n] is a 
solution set and M is the capacity of knapsack*/ 

{ 

 
For j ← 1 to n do X[j]← 
0 
profit ← 0 // Total profit of item filled in the knapsack 
weight ← 0 // Total weight of items packed in knapsacks j 
← 1 

While (Weight < M) // M is the knapsack capacity 
 

{ 

 

if (weight + W[j] =< M) 
X[j] = 1 
weight = weight + W[j] 
else{ 
X[j] = (M – weight)/w[j] 
weight = M 

 
} 

Profit = profit + p[j] * X[j] 
j++; 
} // end of while 
} // end of Algorithm 

 
Applications 

 Cutting raw materials without losing too much material 

 Picking through the investments and portfolios 

 Selecting assets of asset-backed securitization 

 Generating keys for the Merkle-Hellman algorithm 

 Cognitive Radio Networks 

 Power Allocation 

 Network selection for mobile nodes 

Advantage:  

• Will find an optimal solution if an optimal solution exists.  

 

Disadvantage:  

 Computationally very demanding: O ( n *2 n ).  

 Very memory intensive.  

 Number of nodes and links both grow with 2 n, node label grows with n 

 

 



 

3.4. TREE VERTEX SPLITTING 

 

 

 



 

 

 

 



 

Example: 

 

 

 



 

 
 

 3.5. JOB SEQUENCING WITH DEADLINES 

 

The problem is the number of jobs, their profit and deadlines will be given and we have to find a sequence 

of job, which will be completed within its deadlines, and it should yield a maximum profit. 

 

Points To remember: 

 To complete a job, one has to process the job or a action for one unit of time. 

 Only one machine is available for processing jobs. 

 A feasible solution for this problem is a subset of j of jobs such that each job in this subject can be 

completed by this deadline. 

 If we select a job at that time , 

 Since one job can be processed in a single m/c. The other job has to be in its waiting state until the 

job is completed and the machine becomes free. 

 So the waiting time and the processing time should be less than or equal to the dead line of the job. 

 



 

Step-02: 

Value of maximum deadline = 5. 

So, draw a Gantt chart with maximum time on Gantt chart = 5 units as shown- 

Now, 

Problem- 
 

Given the jobs, their deadlines and associated profits as shown- 
 

 

Jobs J1 J2 J3 J4 J5 J6 

Deadline
s 

 
5 

 
3 

 
3 

 
2 

 
4 

 
2 

Profits 
 

20
0 

 
18
0 

 
19
0 

 
30
0 

 
120 

 
10
0 

 

 We take each job one by one in the order they appear in Step-01. 

 We place the job on Gantt chart as far as possible from 0. 

 

Step-03: 
 
 

 We take job J4. 

 Since its deadline is 2, so we place it in the first empty cell before deadline 2 as- 

Step-04: 
 

 
 We take job J1. 

 Since its deadline is 5, so we place it in the first empty cell before deadline 5 as- 

 



 

 We take job J2. 

 Since its deadline is 3, so we place it in the first empty cell before deadline 3. 

 Since the second and third cells are already filled, so we place job J2 in the first cell as- 

Step-07: 

 Now, we take job J5. 

 Since its deadline is 4, so we place it in the first empty cell before deadline 4 as- 

Step-05: 
 
 
 We take job J3. 

 Since its deadline is 3, so we place it in the first empty cell before deadline 3 as- 
 

 
Step-06: 

 

 

 

 

Now, 

 The only job left is job J6 whose deadline is 2. 

 All the slots before deadline 2 are already occupied. 

 Thus, job J6 can not be completed. 

 

The optimal schedule is- 

J2 , J4 , J3 , J5 , J1 

This is the required order in which the jobs must be completed in order to obtain the maximum profit. 



 

3.6  MINIMUM COST SPANNING TREES – PRIM’S ALGORITHM – KRUSKAL’S 

ALGORITHM 

 

Minimum Cost Spanning Tree: 

 

 

 

Graph 

 
Spanning Tree of the above Graph 

 

Minimum spanning tree: 

 Each and every edge will contain the given non-negative length .connect all the 

nodes with edge present in set E? and weight has to be minimum. 

NOTE: 

 We have to visit all the nodes. 

 The subset tree (i.e) any connected graph with ‘N’ vertices must have at least N-1 

edges and also it does not form a cycle. 

 

Definition: 

 A spanning tree of a graph is an undirected tree consisting of only those edge that 

are necessary to connect all the vertices in the original graph. 

 A Spanning tree has a property that for any pair of vertices there exist only one path 
between them and the insertion of an edge to a spanning tree form a unique cycle. 

 

Application of the spanning tree: 

1. Analysis of electrical circuit. 

2. Shortest route problems. 

 

Minimum cost spanning tree: 

 The cost of a spanning tree is the sum of cost of the edges in that trees. 

 There are 2 method to determine a minimum cost spanning tree are 

1. Kruskal’s Algorithm 

2. Prom’s Algorithm. 

 

 



 

      Advantages: 

 The minimum spanning tree (MST) is an important concept in network design and optimization.  

 The main benefit of finding the MST in a network is that it provides the most cost-effective way to 

connect all nodes in the network while minimizing the total weight (or cost) of the edges. 

Applications of Minimum Spanning Tree Problem 

 Network design. 

 Approximation algorithms for NP-hard problems. 

 Indirect applications. 

 Cluster analysis. 

 Image segmentation 

 To find paths in the map 

 To design networks like telecommunication networks, water supply networks, and electrical grids. 

 

 

3.6.1. PRIM’S ALGORITHM 

 

 Spanning tree - A spanning tree is the subgraph of an undirected connected graph. 

 Minimum Spanning Tree - Minimum spanning tree can be defined as the spanning tree in which the sum 

of the weights of the edge is minimum. The weight of the spanning tree is the sum of the weights given to 

the edges of the spanning tree. 

 Definition: Prim's Algorithm is a greedy algorithm that is used to find the minimum spanning tree from 

a graph.  

 Prim's algorithm finds the subset of edges that includes every vertex of the graph such that the sum of 

the weights of the edges can be minimized. 

 Prim's algorithm starts with the single node and explores all the adjacent nodes with all the connecting 

edges at every step. The edges with the minimal weights causing no cycles in the graph got selected. 

Algorithm 

Step 1: Select a starting vertex   

Step 2: Repeat Steps 3 and 4 until there are fringe vertices   

Step 3: Select an edge 'e' connecting the tree vertex and fringe vertex that has minimum weight   

Step 4: Add the selected edge and the vertex to the minimum spanning tree T   

 [END OF LOOP]   

 Step 5: EXIT   

Applications: 

 Prim's algorithm can be used in network designing. 

 It can be used to make network cycles. 

 It can also be used to lay down electrical wiring cables. 

 

Example:  

 

 Suppose, a weighted graph is - 

Step 1 - First, we have to choose a vertex from the above graph. Let's choose B. 

Step 2 - Now, o choose and add the shortest edge from vertex B.  

 

There are two edges from vertex B that are B to C with weight 10 and edge B to D with weight 4.  

Among the edges, the edge BD has the minimum weight. So, add it to the MST. 



 

 
Step 3 - Now, again, choose the edge with the minimum weight among all the other edges. In this case, the edges 

DE and CD are such edges. Add them to MST and explore the adjacent of C, i.e., E and A. So, select the edge DE 

and add it to the MST. 

 
 

Step 4 - Now, select the edge CD, and add it to the MST. 

 
 

Step 5 - Now, choose the edge CA. Here, we cannot select the edge CE as it would create a cycle to the graph. So, 

choose the edge CA and add it to the MST. 

 
So, the graph produced in step 5 is the minimum spanning tree of the given graph. The cost of the MST is given 

below - 

Cost of MST = 4 + 2 + 1 + 3 = 10 units. 

 

Time Complexity: 

  The time complexity of the Prim's Algorithm is O ( ( V + E ) l o g V ). 

 

 

 

 

 

 



 

Algorithm for Prim’s Algorithm: 

 

 

 

 

3.6.2. KRUSKAL’S ALGORITHM 

 

 In Kruskal's algorithm the selection function chooses edges in increasing order of length without 

worrying too much about their connection to previously chosen edges, except that never to form a cycle. 

 Invented by Joseph Kruskal 

 Kruskal's algorithm finds a minimum spanning forest of an undirected edge-weighted graph. If the graph 

is connected, it finds a minimum spanning tree. 

 Kruskal's greedy algorithm finds a minimum spanning tree for a weighted, undirected graph.  

 The algorithm starts with a forest consisting of the individual nodes of the graph and then finds the 

cheapest edge from each node and adds it to the forest. 

 Sort all the edges from low weight to high. 

 The result is a forest of trees that grows until all the trees in a forest (all the components) merge in a 

single tree. 

 In this algorithm, a minimum cost-spanning tree ‘T’ is built edge by edge. 

 Edge are considered for inclusion in ‘T’ in increasing order of their cost. 

 An edge is included in ‘T’ if it doesn’t form a cycle with edge already in T. 

 To find the minimum cost spanning tree the edge are inserted to tree in increasing order of their cost. 

 

Advantages: 

 To find the subset of edges that generate the tree and includes each and every vertex where the sum of all 

weight of the edges is a minimum.  

 Kruskal algorithm is suitable for sparse graphs (low number of edges). 



 

 

Ex: The Given Graph is below find the Minimum Cost spanning Tree using Kruskal’s Method. 

 

 

Illustration: The sample Input Graph as shown below 
  

 
 

 

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8 

edges.  

 After sorting: 

Weight Source Destination 

1 7 6 

2 8 2 

2 6 5 

4 0 1 

4 2 5 

6 8 6 

7 2 3 

7 7 8 

8 0 7 

8 1 2 

9 3 4 

10 5 4 

11 1 7 

14 3 5 

 

Now pick all edges one by one from the sorted list of edges  

 

Step 1: Pick edge 7-6. No cycle is formed, include it.  

 



 

 
Add edge 7-6 in the MST 

 

Step 2:  Pick edge 8-2. No cycle is formed, include it.  

 

 
Add edge 8-2 in the MST 

 

 

Step 3: Pick edge 6-5. No cycle is formed, include it.  

 

 
Add edge 6-5 in the MST 

 

Step 4: Pick edge 0-1. No cycle is formed, include it. 

 



 

 
Add edge 0-1 in the MST 

 

Step 5: Pick edge 2-5. No cycle is formed, include it. 

 

 
Add edge 2-5 in the MST 

 

Step 6: Pick edge 8-6. Since including this edge results in the cycle, discard it. Pick edge 2-3: No cycle is formed, 

include it. 

 
Add edge 2-3 in the MST 

 

Step 7: Pick edge 7-8. Since including this edge results in the cycle, discard it. Pick edge 0-7. No cycle is formed, 

include it. 



 

 
Add edge 0-7 in MST 

Step 8: Pick edge 1-2. Since including this edge results in the cycle, discard it. Pick edge 3-4. No cycle is formed, 

include it. 

 
 

 

Algorithm for Krusal’s Algorithm: 

 



 Fig 3.7 (a) 

Time Complexity: 

 

 O(E logE) or O(V logV) is the time complexity of the Kruskal algorithm.  

 

Compare Prim’s and Kruskal’s Algorithm: 

 

Prim’s Algorithm Kruskal’s Algorithm 

It starts to build the Minimum Spanning Tree 

from any vertex in the graph. 

It starts to build the Minimum Spanning Tree 

from the vertex carrying minimum weight in 

the graph. 

It traverses one node more than one time to 

get the minimum distance. 
It traverses one node only once. 

Prim’s algorithm has a time complexity of 

O(V2), V being the number of vertices and 

can be improved up to O(E log V) using 

Fibonacci heaps. 

Kruskal’s algorithm’s time complexity is 

O(E log V), V being the number of vertices. 

Prim’s algorithm gives connected component 

as well as it works only on connected graph. 

Kruskal’s algorithm can generate 

forest(disconnected components) at any 

instant as well as it can work on 

disconnected components. 

Prim’s algorithm runs faster in dense graphs. 
Kruskal’s algorithm runs faster in sparse 

graphs. 

It generates the minimum spanning tree 

starting from the root vertex. 

It generates the minimum spanning tree 

starting from the least weighted edge.  

Applications of prim’s algorithm are 

Travelling Salesman Problem, Network for 

roads and Rail tracks connecting all the cities 

etc. 

Applications of Kruskal algorithm are LAN 

connection, TV Network etc. 

Prim’s algorithm prefer list data structures. 
Kruskal’s algorithm prefer heap data 

structures. 

  

 3.7. AN OPTIMAL RANDOMIZED ALGORITHM 

 



 

 

 3.8. OPTIMAL STORAGE ON TAPES 

 

 



 

 

 

 

 

 

 

 

 

 

Optimal storage on tape is minimization problem which, 

Optimal   Storage   on   Tapes   Problem: Given   n   programs   P1,   P2,   …,   Pn  of   length   L1,   L2,   …, 

Ln  respectively, store them on a tap of length L such that Mean Retrieval Time (MRT) is a minimum. 

The retrieval time of the jth program is a summation of the length of first j programs on tap. Let Tj be the 

time to retrieve program Pj. The retrieval time of Pj   is computed as, 

 

 

Mean retrieval time of n programs is the average time required to retrieve any program. It is required to store 

programs in an order such that their Mean Retrieval Time is minimum. MRT is computed as, 

 

 

 In this case, we have to find the permutation of the program order which minimizes the MRT after 

storing all programs on single tape only. 

 There are many permutations of programs. Each gives a different MRT. Consider three programs 

(P1, P2, P3) with a length of (L1, L2, L3) = (5, 10, 2). 

 Let’s find the MRT for different permutations. 6 permutations are possible for 3 items. The Mean 

Retrieval Time for each permutation is listed in the following table. 

 

 

 

Ordering Mean Retrieval Time (MRT) 



 

P1, P2, P3 ( (5) + (5 + 10) + (5 + 10 + 2) ) / 3 = 37 / 3 

P1, P3, P2 ( (5) + (5 + 2) + (5 + 2 + 10) ) = 29 / 3 

P2, P1, P3 ( (10) + (10 + 5) + (10 + 5 + 2) ) = 42 / 3 

P2, P3, P1 ( (10) + (10 + 2) + (10 + 2 + 5) ) = 39 / 3 

P3, P1, P2 ( (2) + (2 + 5) + (2 + 5 + 10) ) = 26 / 3 

P3, P2, P1 ( (2) + (2 + 10) + (2 + 10 + 5) ) = 31 / 3 

 

 It should be observed from the above table that the MRT is 26/3, The Optimal Storage Pattern is 

P3,P1,P2 

 

 3.9.OPTIMAL MERGE PATTERN 

 

 Optimal merge pattern is a pattern that relates to the merging of two or more sorted files in a single 

 sorted file. This type of merging can be done by the two-way merging method. 

 If we have two sorted files containing n and m records respectively then they could be merged together, 

to obtain one sorted file in time O (n+m). 

 There are many ways in which pairwise merge can be done to get a single sorted file. Different pairings 

require a different amount of computing time.The main thing is to pairwise merge the n sorted files so 

that the number of comparisons will be less. 

 

The formula of external merging cost is: 

 

 
 

 

 

Where, f (i) represents the number of records in each file and d (i) represents the depth. 



 

 

 

Optimal merge pattern example 

 

Given a set of unsorted files: 5, 3, 2, 7, 9, 13 

 

Now, arrange these elements in ascending order: 2, 3, 5, 7, 9, 13 

 

After this, pick two smallest numbers and repeat this until we left with only one number. 

 

Now follow following 

steps: Step 1: Insert 2, 3 

 

Step 2: 

 

 

Step 3: Insert 5 

 



 

Step 4: Insert 13 

Step 5: Insert 7 and 9 

 

 

 

 

 

 

 

 

 

 

 

 



 

Step 6: 

So, The merging cost = 5 + 10 + 16 + 23 + 39 = 93 

 

Algorithm for optimal merge pattern: 

 



 

 3.10. SINGLE SOURCE SHORTEST PATHS 

 

 The Single-Source Shortest Path (SSSP) problem consists of finding the shortest paths between a given 

vertex v and all other vertices in the graph.  

 Algorithms such as Breadth-First-Search (BFS) for unweighted graphs or Dijkstra solve this problem. 

 Bellman-Ford and Dijkstra's algorithms are powerful tools for finding the shortest path in a graph or 

network.  

 Dijkstra Algorithm is a graph algorithm for finding the shortest path from a source node to all other nodes 

in a graph(single source shortest path).  

 It is a type of greedy algorithm. It only works on weighted graphs with positive weights. 
 Dijkstra's Algorithm is also known as Single Source Shortest Path (SSSP) problem.  

 It is used to find the shortest path from source node to destination node in graph. The graph is widely accepted data 
structure to represent distance map. 

Bellman-Ford Algorithm 

 Bellman-Ford is a single source shortest path algorithm that determines the shortest path between a given 

source vertex and every other vertex in a graph. This algorithm can be used on both weighted and 

unweighted graphs. 

 A Bellman-Ford algorithm is also guaranteed to find the shortest path in a graph, similar to Dijkstra’s 

algorithm.  

 Although Bellman-Ford is slower than Dijkstra’s algorithm, it is capable of handling graphs with negative 

edge weights, which makes it more versatile. 

  The shortest path cannot be found if there exists a negative cycle in the graph.  

 As a result, Bellman-Ford is also capable of detecting negative cycles, which is an important feature. 

 

Single-source shortest path: Dijkstra’s Algorithm: 

 

 Graphs can be used to represent the highway structure of a state or country withvertices representing cit ies 

and edges representing sections of highway.   

 The edges can thenbe assigned weights which may be either the distance between the two cities connected 

bythe edge or the average time to drive along that section of highway.  

  

 
 

o A Direct Graph G={V,E} such that G is a Graph, V is a set of vertices and E is a set of Edges. 

o V- Vertices = {V1, V2, V3, V4, V5, V6} 

o E-Edges = {(1,2) (2,3) (1,3)(1,4) (4,1)(4,5)(5,2)(2,4)(3,5)(5,3)(6,5)} 

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/


 

 
 

Path Length 

 

                Source                             Destination  

1            {    1              ------               4}                                         10 

2            {    1              --   4  ---          5}                                         25 

3            {    1              --- 4---5---       2}                                         45 

4            {    1              ------                3}                                         45 

5                 { 6} ∝ 

 

Result : 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Algorithm for single Source Shortest Paths: 

 

 

 



 

 
DESIGN AND ANALYSIS OF ALGORITHMS 

 

UNIT – IV 

 

 

 DYNAMIC PROGRAMMING, TRAVERSAL & SEARCHING: General method- Multi stage graphs- 

All pairs shortest path problem- String Editing- 0/1 knapsack problem- Reliability design - Travelling sales 

person problem. Techniques for Binary Trees-Techniques for Graphs-BFS-DFS. 

 

4.0. DYNAMIC PROGRAMMING 

 

 Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 

programming, as greedy method, is a powerful algorithm design technique that can be 

used when the solution to the problem may be viewed as the result of a sequence of 

decisions. 

 In the greedy method we make irrevocable decisions one at a time, using a greedy 

criterion. However, in dynamic programming we examine the decision sequence to see 

whether an optimal decision sequence contains optimal decision subsequence. 

 When optimal decision sequences contain optimal decision subsequences, we can 

establish recurrence equations, called dynamic-programming recurrence equations, that 

enable us to solve the problem in an efficient way. 

 Dynamic programming is based on the principle of  optimality (also coined by 

Bellman). 

 The principle of optimality states that no matter whatever the initial state and initial 

decision are, the remaining decision sequence must constitute an optimal decision 

sequence with regard to the state resulting from the first decision.  

 The principle implies that an optimal decision sequence is comprised of optimal 

decision subsequences. Since the principle of optimality may not hold for some 

formulations of some problems, it is necessary to verify that it does hold for the problem 

being solved. Dynamic programming cannot be applied when this principle does not 

hold. 

 

The steps in a dynamic programming solution are: 

 

 Verify that the principle of optimality holds 

 Set up the dynamic-programming recurrence equations 

 Solve the dynamic-programming recurrence equations for the value of the 

optimal solution. 

 Perform a trace back step in which the solution itself is constructed. 

 

 Dynamic programming differs from the greedy method since the greedy method 

produces only one feasible solution, which may or may not be optimal, while dynamic 

programming produces all possible sub-problems at most once, one of which 

guaranteed to be optimal.  

 Optimal solutions to sub-problems are retained in a table, thereby avoiding the work of 

recomputing the answer every time a sub-problem is encountered 

 The divide and conquer principle solve a large problem, by breaking it up into smaller 

problems which can be solved independently.  

 In dynamic programming this principle is carried to an extreme: when we don't know 

exactly which smaller problems to solve, we simply solve them all, then store the 

answers away in a table to be used later in solving larger problems.  

 Care is to be taken to avoid recomputing previously computed values, otherwise the 

recursive program will have prohibitive complexity. In some cases, the solution can be 

improved and in other cases, the dynamic programming technique is the best approach. 

Two difficulties may arise in any application of dynamic programming: 



 

1. It may not always be possible to combine the solutions of smaller problems to form 

the solution of a larger one. 
2. The number of small problems to solve may be un-acceptably large. 

There is no characterized precisely which problems can be effectively solved with 

dynamic programming; there are many hard problems for which it does not seen to be 

applicable, as well as many easy problems for which it is less efficient than standard 

algorithms. 

 

4.1. DYNAMIC PROGRAMMING 

 

 Dynamic Programming is an approach to solve problems by dividing the main complex problem into 

smaller parts, and then using these to build up the final solution.  

 Dynamic programming is a computer programming technique where an algorithmic problem is first 

broken down into sub-problems, the results are saved, and then the sub-problems are optimized to 

find the overall solution — which usually has to do with finding the maximum and minimum range 

of the algorithmic query. 

 These subproblems then overlap with one another as you find solutions by solving the same 

subproblem repeatedly.  

 Dynamic programming can be used to solve problems with overlapping subproblems. 

 There are three steps in finding a dynamic programming solution to a problem:  

 (i) Define a class of subproblems,  

 (ii) give a recurrence based on solving each subproblem in terms of simpler subproblems, and  

 (iii) Give an algorithm for computing the recurrence. 

   Advantages:  

 

 Exploiting the structure and properties of the network optimization problems,  

 Reducing computational complexity and memory requirements, and  

 Providing exact solutions or lower bounds for the pricing problem. 

Characteristics of Dynamic Programming: 

 

Aspect Dynamic Programming 

Approach Bottom-up (starting from base cases) 

Subproblem Solving Solves each subproblem only once 

Overlapping 

Subproblems 
Exploits overlapping substructures 

Time Complexity 
Generally more efficient due to 

memorization and avoiding duplicates 

 

General Characteristics of Dynamic Programming:  

 

 1) The problem can be divided into stages with a policy decision required at each stage. 

 2) Each stage has number of states associated with it.  

 3) Given the current stage an optimal policy for the remaining stages is independent of the policy 

adopted.  

 4) The solution procedure begins be finding the optimal policy for each state of the last stage.  

 5) A recursive relation is available which identifies the optimal policy for each stage with n stages 

remaining  

               given the optimal policy for each stage with (n-1) stages remaining. 

 

 

 



 

Applications of Dynamic Programming: 

 

 Longest Common Subsequence. 

 Finding Shortest Path. 

 Finding Maximum Profit with other Fixed Constraints. (0/1 knapsack problem) 

 Job Scheduling in Processor. 

 Bioinformatics. 

 Optimal search solutions. 

 Matrix Chain Manipulation 

 Optimal Binary Search Trees 

 Multistage Graph 

 Travelling Sales Man Problem 

 

Real life example of dynamic programming 

 Optimization,  

 Graph theory, 

  image processing,  

 machine learning,  

 cryptography 

Example: 

 Fibonacci number series 

 Knapsack problem 

 Tower of Hanoi 

 All pair shortest path by Floyd-Warshall and Bellman Ford 

 Shortest path by Dijkstra 

 Project scheduling 

Advantages: 

 The main use of dynamic programming is to solve optimization problems. 

 To find out the minimum or the maximum solution of a problem.  

 The dynamic programming guarantees to find the optimal solution of a problem if the solution exists. 

 Dynamic programming is more efficient for problems that have many overlapping subproblems, as it 

avoids redundant computations and saves time. 

Disadvantages: 

 It also requires more memory and space, as it stores all the results of the subproblems, even if some 

of them are not needed. 

 Dynamic programming uses recursion, which requires more memory in the call stack, and leads to a 

stack overflow condition in the runtime.  

 It takes memory to store the solutions of each sub-problem. There is no guarantee that the stored 

value will be used later in execution. 

GENERAL METHOD 

 

 There are two methods:  

i) Top – Down Method 

ii) Bottom – up Method 

 Top-down method: The top-down method solves the overall problem before you break it down into 

subproblems.  

 Bottom-up method: In the bottom-up method, or tabulation method, you solve all the related sub-

problems first instead of applying recursion. 

 



 

 
 

 

4.2. MULTI STAGE GRAPHS 

 A multistage graph G = (V, E) is a directed graph in which the vertices are 

partitioned into k > 2 disjoint sets Vi, 1 < i < k. In addition, if <u, v> is an edge in 
E, then u  Vi and v  Vi+1 for some i, 1 < i < k. 

 Let the vertex ‘s’ is the source, and ‘t’ the sink. Let c (i, j) be the cost of edge <i, 
j>. The cost of a path from ‘s’ to ‘t’ is the sum of the costs of the edges on the path. 

The multistage graph problem is to find a minimum cost path from ‘s’ to ‘t’. Each 

set Vi defines a stage in the graph. Because of the constraints on E, every path from 
‘s’ to ‘t’ starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so 
on, and eventually terminates in stage k. 

 A dynamic programming formulation for a k-stage graph problem is obtained by 

first noticing that every s to t path is the result of a sequence of k – 2 decisions. 

The ith 

decision involves determining which vertex in vi+1, 1 < i < k - 2, is to be on the  path. 
Let c (i, j) be the cost of the path from source to destination. Then using the forward 
approach, we obtain: 

 
cost (i, j) = min {c (j, l) + cost (i + 1, l)} 

l  Vi + 1 

<j, l>  E 

 
ALGORITHM: 

 

Algorithm Fgraph (G, k, n, p) 
// The input is a k-stage graph G = (V, E) with n vertices 
// indexed in order or stages. E is a set of edges and c [i, j] 
// is the cost of (i, j). p [1 : k] is a minimum cost path. 

{ 
cost [n] := 0.0; 
for j:= n - 1 to 1 step – 1 do 

{ // compute cost [j] 

let r be a vertex such that (j, r) is an edge 
of G and c [j, r] + cost [r] is minimum; cost 
[j] := c [j, r] + cost [r]; 
d [j] := r: 

} 

p [1] := 1; p [k]  := n; // Find a minimum cost path. 
for j := 2 to k - 1 do p [j] := d [p [j - 1]]; 

} 

The multistage graph  problem  can  also be solved using the  backward approach. Let 

bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be the 
cost of bp(i, j). From the backward approach we obtain: 

Bcost (i, j) = min { Bcost (i –1, l) + c (l, 

j)} l  Vi - 1 

<l, j>  E 
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Algorithm Bgraph (G, k, n, p) 
// Same function as Fgraph 

{ 
Bcost [1] := 0.0; 
for j := 2 to n do 

{ // Compute Bcost [j]. 

Let r be such that (r, j) is an edge of G 
and Bcost [r] + c [r, j] is minimum; 
Bcost [j] := Bcost [r] + c [r, j]; 
D [j] := r; 

} //find a minimum cost path 
p [1] := 1; p [k] := n; 

for j:= k - 1 to 2 do p [j] := d [p [j + 1]]; 

} 
 
 

Complexity Analysis: 
 

The complexity analysis of the algorithm is fairly straightforward. Here, if G has E

edges, then the time for the first for loop is  (V +E).        

    
EXAMPLE: 

 
Find the minimum cost path from s to t in the multistage graph of five stages shown 
below. Do this first using forward approach and then using backward approach. 

 

 
 

 

 
s t 

 

 

 

 
FORWARD APPROACH: 

We use the following equation to find the minimum cost path from s to t: 

cost (i, j) = min {c (j, l) + cost (i + 1, l)} 
l  Vi + 1 

<j, l>  E 

cost (1, 1) = min {c (1, 2) + cost (2, 2), c (1, 3) + cost (2, 3), c (1, 4) + cost (2, 4), 
c (1, 5) + cost (2, 5)} 

= min {9 + cost (2, 2), 7 + cost (2, 3), 3 + cost (2, 4), 2 + cost (2, 5)} 

 



 

Now first starting with, 
 

cost (2, 2) = min{c (2, 6) + cost (3, 6), c (2, 7) + cost (3, 7), c (2, 8) + cost (3, 8)} 
= min {4 + cost (3, 6), 2 + cost (3, 7), 1 + cost (3, 8)} 

 

cost  (3,  6) = min {c (6, 9) + cost (4, 9), c (6, 10) + cost (4, 10)} 
= min {6 + cost (4, 9), 5 + cost (4, 10)} 

 
cost (4, 9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0) = 4 

 

cost (4, 10) = min {c (10, 12) + cost (5, 12)} = 2 

 
Therefore, cost (3, 6) = min {6 + 4, 5 + 2} = 7 

 

cost (3, 7) = min {c (7, 9) + cost (4, 9) , c (7, 10) + cost (4, 10)} 
= min {4 + cost (4, 9), 3 + cost (4, 10)} 

 
cost (4, 9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0} = 4 

 

Cost (4, 10) = min {c (10, 2) + cost (5, 12)} = min {2 + 0} = 2 
 

Therefore, cost (3, 7) = min {4 + 4, 3 + 2} = min {8, 5} = 5 
 

cost (3, 8) = min {c (8, 10) + cost (4, 10), c (8, 11) + cost (4, 11)} 
= min {5 + cost (4, 10), 6 + cost (4 + 11)} 

 
cost (4, 11) = min {c (11, 12) + cost (5, 12)} = 5 

 
Therefore, cost (3, 8) = min {5 + 2, 6 + 5} = min {7, 11} = 7 

 

Therefore, cost (2, 2) = min {4 + 7, 2 + 5, 1 + 7} = min {11, 7, 8} = 7 
 

Therefore, cost (2, 3) = min {c (3, 6) + cost (3, 6), c (3, 7) + cost (3, 7)} 
= min {2 + cost (3, 6), 7 + cost (3, 7)} 
= min {2 + 7, 7 + 5} = min {9, 12} = 9 

 
cost (2, 4) =  min {c (4, 8) + cost (3, 8)} = min {11 + 7} = 18 
cost (2, 5) =  min {c (5, 7) + cost (3, 7), c (5, 8) + cost (3, 8)} 

= min {11 + 5, 8 + 7} = min {16, 15} = 15 
 

Therefore, cost (1, 1) = min {9 + 7, 7 + 9, 3 + 18, 2 + 15} 
= min {16, 16, 21, 17} = 16 

 

The minimum cost path is 16. 

 



 

 

 
The path is 1 2 7 

 
or 

10 12 

 1     3     6      10     12 

 

 

BACKWARD APPROACH: 

We use the following equation to find the minimum cost path from t to s: 

Bcost (i, J) = min {Bcost (i – 1, l) + c (l, J)} 
l  vi – 1 

<l, j>  E 

 
Bcost (5, 12) = min {Bcost (4, 9) + c (9, 12), Bcost (4, 10) + c (10, 12), 

Bcost (4, 11) + c (11, 12)} 
= min {Bcost (4, 9) + 4, Bcost (4, 10) + 2, Bcost (4, 11) + 5} 

 
Bcost (4, 9) = min {Bcost (3, 6) + c (6, 9), Bcost (3, 7) + c (7,9)} 

= min {Bcost (3, 6) + 6, Bcost (3, 7) + 4} 

 
Bcost (3, 6) = min {Bcost (2, 2) + c (2, 6), Bcost (2, 3) + c (3,6)} 

= min {Bcost (2, 2) + 4, Bcost (2, 3) + 2} 

 
Bcost (2, 2)  = min {Bcost (1, 1) + c (1, 2)} = min {0 + 9} = 9 

 

Bcost (2, 3)  = min {Bcost (1, 1) + c (1, 3)} = min {0 + 7} = 7 
 

Bcost (3, 6) = min {9 + 4, 7 + 2} = min {13, 9} = 9 
 

Bcost (3, 7) = min {Bcost (2, 2) + c (2, 7), Bcost (2, 3) + c (3, 7), 
Bcost (2, 5) + c (5, 7)} 

 
Bcost (2, 5) = min {Bcost (1, 1) + c (1, 5)} = 2 

 
Bcost (3, 7) = min {9 + 2, 7 + 7, 2 + 11} = min {11, 14, 13} =11 

 

Bcost (4, 9) = min {9 + 6, 11 + 4} = min {15, 15} = 15 
 

Bcost (4, 10) = min {Bcost (3, 6) + c (6, 10), Bcost (3, 7) + c (7,10), 
Bcost (3, 8) + c (8, 10)} 

 
Bcost (3, 8) = min {Bcost (2, 2) + c (2, 8), Bcost (2, 4) + c (4, 8), 

Bcost (2, 5) + c (5, 8)} 

Bcost (2, 4) = min {Bcost (1, 1) + c (1, 4)} = 3 

 
Bcost (3, 8) = min {9 + 1, 3 + 11, 2 + 8} = min {10, 14, 10} = 10 

 

Bcost (4, 10) = min {9 + 5, 11 + 3, 10 + 5} = min {14, 14, 15) = 14 
 

Bcost (4, 11) = min {Bcost (3, 8) + c (8, 11)} = min {Bcost (3, 8) + 6} 

= min {10 + 6} = 16 

 

Bcost (5, 12) = min {15 + 4, 14 + 2, 16 + 5} = min {19, 16, 21} = 16. 
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4.3. ALL PAIRS SHORTEST PATHS 

 
 In the all pairs shortest path problem, we are to find a shortest path between every 

pair of vertices in a directed graph G.  
 That is, for every pair of vertices (i, j), we are to find a shortest path from i to j as 

well as one from j to i.  
 These two paths are the same when G is undirected. 
 When no edge has a negative length, the all-pairs shortest path problem may be 

solved by using Dijkstra’s greedy single source algorithm n times, once with each of 
the n vertices as the source vertex. 

 The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the 

length of a shortest path from i to j.  
 The matrix A can be obtained by solving n single-source problems using the algorithm 

shortest Paths. Since each application of this procedure requires O (n2) time, the 

matrix A can be obtained in O (n3) time. 

 The dynamic programming solution, called Floyd’s algorithm, runs in O (n3) time. 
Floyd’s algorithm works even when the graph has negative length edges (provided 
there are no negative length cycles). 

 The shortest i to j path in G, i ≠ j originates at vertex i and goes through some 
intermediate vertices (possibly none) and terminates at vertex j.  

 If k is an intermediate vertex on this shortest path, then the subpaths from i to k and 
from k  to j must be shortest paths from i to k and k to j, respectively. 

  Otherwise, the i to j path is not of minimum length. So, the principle of optimality 

holds. Let Ak (i, j) represent the length of a shortest path from i to j going through no 
vertex of index greater than k, we obtain: 

 

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)} 
1<k<n 

 

Algorithm All Paths (Cost, A, n) 
// cost [1:n, 1:n] is the cost adjacency matrix of a graph which 

// n vertices; A [I, j] is the cost of a shortest path from vertex 
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n. 
{ 

for i := 1 to n do 
for j:= 1 to n do 

A [i, j] := cost  [i, j]; // copy cost into A. 
for k := 1 to n do 

for i := 1 to n do 

for j := 1 to n do 
A [i, j] := min (A [i, j], A [i, k] + A [k, j]); 

} 
 

Complexity Analysis: A Dynamic programming algorithm based on this recurrence 
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has 

a complexity of O (n3). 

 
Example 1: 

 

Given a weighted digraph G = (V, E) with weight. Determine the length of the 
shortest path between all pairs of vertices in G. Here we assume that there are no 

cycles with zero or negative cost. 
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Cost adjacency matrix (A0) =  
 

0 



3  0 


3 



 

 

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)} 
1<k<n 

 

Solve the problem for different values of k = 1, 2 and 3 

 
Step 1: Solving the equation for, k = 1; 

 



 

 

A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0 

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4 

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11 

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6 

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0 

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2 

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3 

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7 

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0 
 

 

A(1) = 

0 4 


6 0 

3 7 

11



0 

Step 2: Solving the equation for, K = 2; 
 

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0 

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4 

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6 

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6 

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0 

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2 

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3 

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7 

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0 

 

 

A(2) = 

0 4 


6 0 

3 7 

6 



0 

Step 3: Solving the equation for, k = 3; 
 

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0 

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4 

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6 

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5 

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0 

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2 

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3 

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7 

2 

2 



 

 

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0 

 
 0 4 6 

A(3)   = 
 
5 0 2 



 

3 7 0 

4.5 STRING EDITING 
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4.6. 0/1 – KNAPSACK 

 

 We are given n objects and a knapsack. Each object i has a positive weight wi and 
a positive value Vi.  

 The knapsack can carry a weight not exceeding W. Fill the knapsack so that the 
value of objects in the knapsack is optimized. 

 A solution to the knapsack problem can be obtained by making a sequence of 

decisions on the variables x1, x2, . . . . , xn. 
  A decision on variable xi involves determining which of the values 0 or 1 is to be 

assigned to it. Let us assume that decisions on the xi are made in the order xn, xn-

1,     x1. Following a decision on  xn,  
 we may be in one of two possible states:  

 The capacity remaining in m – wn and  
 A profit of pn has accrued.  

 It is clear that the remaining decisions xn-1, , x1 must be optimal with respect to 
the problem state resulting from the decision on xn.  

 Otherwise, xn, , x1 will not be optimal. Hence, the principal of optimality holds. 

Fn (m) = max {fn-1  (m), fn-1  (m - wn) + pn} -- 1 

For arbitrary fi (y), i > 0, this equation generalizes to: 

Fi (y) = max {fi-1  (y), fi-1  (y - wi) + pi} -- 2 
 

 Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all 
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using 
equation–2. 

 When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi 
(y) = -  for y < 0, these function values need not be computed explicitly.  

 Since each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to 

compute  fn. 

  When the wi’s are real numbers, fi (y) is needed for real numbers y such that 0 <  
y < m. So, fi cannot be explicitly computed for all y in this range. 

  Even when the wi’s are integer, the explicit Θ (m n) computation of fn may not be 
the most efficient computation.  

 So, we explore an alternative method for both cases. 

 The fi (y) is an ascending step function; i.e., there are a finite number    of y’s, 0 = y1 

< y2  < . . . . < yk, such that fi (y1) < fi (y2) < . . . . . < fi (yk); fi (y) = -   , y < y1;    fi 

(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi 
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi  
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 = 
{(0, 0)}. We can compute Si+1 from Si by first computing: 

Si = {(P, W) | (P – p , W – w )  Si} 

 Now, Si+1 can be computed by merging the pairs in Si and Si to1gether. Note that if 

Si+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj > 
Wk, then the pair (Pj, Wj) can be discarded because of equation-2.  

 Discarding or purging rules such as this one are also known as dominance rules. 
Dominated tuples get purged. In the above, (Pk, Wk) dominates (Pj, Wj). 

 

 

 

 

 

 



 

 

 

 

 

 

Example 1: 

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1,2, 
5) and M = 6. 



 

 

Solution: 
 

Initially, fo (x) = 0, for all x and fi (x) = -  if x < 0. 

Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn} 

F3 (6)  = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2  (2) + 5} 
 

F2 (6)  = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1  (3) + 2} 

F1 (6)  = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1 
 

F1 (3)  = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1 
 

Therefore, F2 (6) = max (1, 1 + 2} = 3 
 

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), -  + 2} 
 

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1 
 

F2 (2) = max {1, -  + 2} = 1 
 

Finally, f3 (6) = max {3, 1 + 5} = 6 

 

Other Solution: 
 

For the given data we have: 

n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1, 2, 5) and M = 6. 



 

 

 
 
 



 

 



 

4.7. RELIABILITY DESIGN 

 
The problem is to design a system that is composed of several devices connected in 
series. Let ri be the reliability of device Di (that is ri  is the probability that  device i  
will function properly) then the reliability of the entire system is  ri. Even if the 
individual devices are very reliable (the ri’s are very close to one), the reliability of 
the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10, 
then  ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the 
same device type are connected in parallel. 

 

 
If stage i contains mimcopies of device Di. Then the probability that all mi hamve a 

malfunction is (1 - r) i. Hence the reliability of stage i becomes 1 – (1 - r) i. 
i i 

 

The reliability of stage ‘i’ is given by a function i (mi). 
 

Our problem is to use device duplication. This maximization is to be carried out under 
a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum 
allowable cost of the system being designed. 

 
We wish to solve: 

 

 

Maximize 

 

 
1 i  n 

  

i mi 

Subject to Ci mi  C 
1 i  n 

  

 

mi > 1 and interger, 1 < i < n 



 

 



Assume each Ci > 0, each mi must be in the range 1 < mi < ui, where 

   n  


ui    C  Ci  CJ  
Ci 


 
 1  

The upper bound ui follows from the observation that mj > 1 

An optimal solution m1, m2 ................mn is the result of a sequence of decisions, one 
decision for each mi. 

 
Let fi (x) represent the maximum value of 

Subject to the constrains: 


1  j i 

  

 mJ

CJ mJ  x 
1  j  i 

and 1 < mj < uJ, 1 < j < i 

  



 

 

Example : 
 

Design a three stage system with device types D1, D2 and D3. The costs are $30, $15 
and $20 respectively. The Cost of the system is to be no more than $105. The 

reliability of each device is 0.9, 0.8 and 0.5 respectively. 

 

Solution: 

 



 

  



 

  



 

 

4.8. TRAVELLING SALESPERSON PROBLEM 
 

 Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined 
such that cij > 0 for all I and j and cij =  if < i, j>  E. Let |V| = n and assume n > 
1. 

  A tour of G is a directed simple cycle that includes every vertex in V. 
  The cost of a tour is the sum of the cost of the edges on the tour.  
 The traveling sales person problem is to find a tour of minimum cost.  
 The tour is to be a simple path that starts and ends  at vertex 1. 
 Let g (i, S) be the length of shortest path starting at vertex i, going through all 

vertices in S, and terminating at vertex 1.  

 The function g (1, V – {1}) is the length of an optimal salesperson tour. From the 
principal of optimality it follows that: 

g1, V - 1  min 
2  k  n 

  

c1k  g  k, V    1, k --  1 

Generalizing equation 1, we obtain (for i  S) 

g i, S   minci  j 

j S 

 g i, S   j   -- 2 

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all 
choices of k. 

 

Example : 

 
For the following graph find minimum cost tour for the traveling salesperson 
problem: 

 

 

0 

The cost adjacency matrix =  
5
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8 9 
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Let us start the tour from vertex 1: 

g (1, V – {1}) =  min {c1k  + g (k, V – {1, K})} - (1) 
2<k<n 

More generally writing: 

 
g (i, s) = min {cij  + g (J, s – {J})} - (2) 

Clearly, g (i, ) = ci1 , 1 ≤ i ≤ n. So, 

g (2, ) = C21 = 5 
 

g (3, ) = C31 = 6 g (4, 

) = C41 = 8 

Using equation – (2) we obtain: 

 
g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})} 

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})} 
= min {9 + g (3, {4}), 10 + g (4, {3})} 

 
g (3, {4}) = min {c34 + g (4, )} = 12 + 8 = 20 

 

g (4, {3}) = min {c43 + g (3, )} = 9 + 6 = 15 

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25 
 

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4,{2})} 
 

g (2, {4}) = min {c24 + g (4, )} = 10 + 8 = 18 
 

g (4, {2}) = min {c42 + g (2, )} = 8 + 5 = 13 
 

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} = 25 
 

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})} 
 

g (2, {3}) = min {c23 + g (3, } = 9 + 6 = 15 
 

g (3, {2}) = min {c32 + g (2, } = 13 + 5 = 18 
 

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} =23 

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})} 
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35 

 
The optimal tour for the graph has length = 35 The 

optimal tour is: 1, 2, 4, 3, 1. 

 

 

 

 



 

 

4.9. TECHNIQUES FOR BINARY TREES 

 A binary tree is a finite collection of elements or it can be said it is made up of nodes. Where each 

node contains the left pointer, right pointer, and a data element.  

 The root pointer points to the topmost node in the tree.  

 When the binary tree is not empty, so it will have a root element and the remaining elements are 

partitioned into two binary trees which are called the left pointer and right pointer of a tree. 

Traversing in the Binary Tree: 

 Tree traversal is the process of visiting each node in the tree exactly once. 

  Visiting each node in a graph should be done in a systematic manner.  

 If search result in a visit to all the vertices, it is called a traversal.  

 There are basically three traversal techniques for a binary tree that are, 

1. Preorder traversal 

2. Inorder traversal 

3. Postorder traversal 

1) Preorder traversal 

 This technique follows the 'root left right' policy.  

 It means that, first root node is visited after that the left subtree is traversed recursively, and finally, 

right subtree is recursively traversed.  

 As the root node is traversed before (or pre) the left and right subtree, it is called preorder traversal.  

 So, in a preorder traversal, each node is visited before both of its subtrees. 

 To traverse a binary tree in preorder, following operations are carried out: 

1. Visit the root. 

2. Traverse the left sub tree of root. 

3. Traverse the right sub tree of root. 

Algorithm: 

Algorithm preorder(t) 

/*t is a binary tree. Each node of t has three fields:  

lchild, data, and rchild.*/ 

{ 

 If t! =0 then 

 { 

  Visit(t); 

  Preorder(t->lchild); 

  Preorder(t->rchild); 

 } 

} 

 

Example: Let us consider the given binary tree, 



 

 

 

Therefore, the preorder traversal of the above tree will  be: 7,1,0,3,2,5,4,6,9,8,10 

The applications of preorder traversal include: 

o It is used to create a copy of the tree. 

o It can also be used to get the prefix expression of an expression tree. 

2) Inorder traversal: 

 This technique follows the 'left root right' policy. 

  It means that first left subtree is visited after that root node is traversed, and finally, the right subtree is 

traversed. 

  As the root node is traversed between the left and right subtree, it is named inorder traversal.  

 So, in the inorder traversal, each node is visited in between of its subtrees. 

 To traverse a binary tree in inorder traversal, following operations are carried out: 

1. Traverse the left most sub tree. 

2. Visit the root. 

3. Traverse the right most sub tree. 

Note: Inorder traversal is also known as LNR traversal. 

 

The applications of Inorder traversal includes : 

o It is used to get the BST nodes in increasing order. 

o It can also be used to get the prefix expression of an expression tree. 

 

 

 

 



 

 

Algorithm: 

lgorithm inorder(t) 

 

/*t is a binary tree. Each node of t has three fields:  

lchild, data, and rchild.*/ 

{ 

 If t! =0 then 

 { 

  Inorder(t->lchild); 

  Visit(t); 

  Inorder(t->rchild); 

 } 

} 

 

Example: Let us consider a given binary tree. 

 

Therefore the inorder traversal of above tree will be: 0,1,2,3,4,5,6,7,8,9,10 

3) Postorder traversal: 

 This technique follows the 'left-right root' policy. 

 It means that the first left subtree of the root node is traversed, after that recursively traverses the 

right subtree, and finally, the root node is traversed. 

 As the root node is traversed after (or post) the left and right subtree, it is called postorder traversal. 

 So, in a postorder traversal, each node is visited after both of its subtrees. 

 To traverse a binary tree in postorder traversal, following operations are carried out: 

1. Traverse the left sub tree of root. 

2. Traverse the right sub tree of root. 

3. Visit the root. 

Note: Postorder traversal is also known as LRN traversal. 



 

 

The applications of postorder traversal include: 

o It is used to delete the tree. 

o It can also be used to get the postfix expression of an expression tree. 

Algorithm: 

Algorithm postorder(t) 

 

/*t is a binary tree .Each node of t has three fields:  

lchild, data, and rchild.*/ 

{ 

 If t! =0 then 

 { 

  Postorder(t->lchild); 

  Postorder(t->rchild); 

  Visit(t); 

 } 

} 

 

Example: Let us consider a given binary tree. 

 
 

Therefore the postorder traversal of the above tree will be: 0,2,4,6,5,3,1,8,10,9,7 

 

 

 

 



 

 

4.10. TECHNIQUES FOR GRAPH 

 Graph traversal is a technique used for searching a vertex in a graph.  

 The graph traversal is also used to decide the order of vertices is visited in the search process.  

 A graph traversal finds the edges to be used in the search process without creating loops. That means 

using graph traversal we visit all the vertices of the graph without getting into looping path. 

 There are two graph traversal techniques and they are as follows... 

1. DFS (Depth First Search) 

2. BFS (Breadth First Search) 

 

4.10.1. GRAPH TRAVERSAL - DFS 

DFS (Depth First Search): 

 DFS traversal of a graph produces a spanning tree as final result. 

  Spanning Tree is a graph without loops.  

 We use Stack data structure with maximum size of total number of vertices in the graph to implement 

DFS traversal. 

Use the following steps to implement DFS traversal... 

 Step 1 - Define a Stack of size total number of vertices in the graph. 

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack. 

 Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of stack and 

push it on to the stack. 

 Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of 

the stack. 

 Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from the 

stack. 

 Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty. 

 Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused edges 

from the graph 

 Back tracking is coming back to the vertex from which we reached the current vertex. 

Example: 



 

 
 



 

 

 

 

 

 

 



 

 

 



 

 

Applications of Depth First Search: 

 

1. Detecting cycle in a graph: A graph has a cycle if and only if we see a back edge during DFS. So we 

can run DFS for the graph and check for back edges. 

2. Path Finding: We can specialize the DFS algorithm to find a path between two given vertices u and z.  

 Call DFS(G, u) with u as the start vertex.  

 Use a stack S to keep track of the path between the start vertex and the current vertex.  

 As soon as destination vertex z is encountered, return the path as the contents of the stack 

3. Topological Sorting: Topological Sorting is mainly used for scheduling jobs from the given 

dependencies among jobs. In computer science, applications of this type arise in instruction scheduling, 

ordering of formula cell evaluation when recomputing formula values in spreadsheets, logic synthesis, 

determining the order of compilation tasks to perform in makefiles, data serialization, and resolving symbol 

dependencies in linkers. 

4. To test if a graph is bipartite: We can augment either BFS or DFS when we first discover a new vertex, 

color it opposite its parents, and for each other edge, check it doesn’t link two vertices of the same color. The 

first vertex in any connected component can be red or black. 

5. Finding Strongly Connected Components of a graph: A directed graph is called strongly connected if 

there is a path from each vertex in the graph to every other vertex. (See this for DFS-based algo for finding 

Strongly Connected Components) 

6. Solving puzzles with only one solution: such as mazes. (DFS can be adapted to find all solutions to a 

maze by only including nodes on the current path in the visited set.). 

7. Web crawlers: Depth-first search can be used in the implementation of web crawlers to explore the links 

on a website. 

8. Maze generation: Depth-first search can be used to generate random mazes. 

9. Model checking: Depth-first search can be used in model checking, which is the process of checking 

that a model of a system meets a certain set of properties. 

10. Backtracking: Depth-first search can be used in backtracking algorithms. 

 

Advantages of Depth First Search: 

 

 Memory requirement is only linear with respect to the search graph. This is in contrast with breadth-first 

search which requires more space. The reason is that the algorithm only needs to store a stack of nodes on 

the path from the root to the current node. 

 The time complexity of a depth-first Search to depth d and branching factor b (the number of children at 

each node, the outdegree) is O(bd) since it generates the same set of nodes as breadth-first search, but 

simply in a different order. Thus practically depth-first search is time-limited rather than space-limited. 

  If depth-first search finds solution without exploring much in a path then the time and space it takes will be 

very less. 

 DFS requires less memory since only the nodes on the current path are stored. By chance DFS may find a 

solution without examining much of the search space at all.  

 

Disadvantages of Depth First Search: 

 

 The disadvantage of Depth-First Search is that there is a possibility that it may down the left-most path 

forever. Even a finite graph can generate an infinite tre One solution to this problem is to impose a cutoff 

depth on the search. Although ideal cutoff is the solution depth d and this value is rarely known in advance 

of actually solving the problem. If the chosen cutoff depth is less than d, the algorithm will fail to find a 

solution, whereas if the cutoff depth is greater than d, a large price is paid in execution time, and the first 

solution found may not be an optimal one. 

  Depth-First Search is not guaranteed to find the solution. 

  And there is no guarantee to find a minimal solution, if more than one solution. 

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join 

our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule. 

https://www.geeksforgeeks.org/topological-sorting/
https://www.geeksforgeeks.org/check-if-a-given-graph-is-bipartite-using-dfs/
https://www.geeksforgeeks.org/strongly-connected-components/
https://www.geeksforgeeks.org/introduction-to-backtracking-data-structure-and-algorithm-tutorials/


 

 

4.10.2. GRAPH TRAVERSAL - BFS 

 

BFS (Breadth First Search): 

 

 BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without 

loops. We use Queue data structure with maximum size of total number of vertices in the graph to 

implement BFS traversal. 

 We use the following steps to implement BFS traversal... 

 Step 1 - Define a Queue of size total number of vertices in the graph. 

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue. 

 Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and insert 

them into the Queue. 

 Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue then 

delete that vertex. 

 Step 5 - Repeat steps 3 and 4 until queue becomes empty. 

 Step 6 - When queue becomes empty, then produce final spanning tree by removing unused edges from 

the graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Example 

 

 



 

 

 
 

 

Applications of Breadth First Search: 

 

1. Shortest Path and Minimum Spanning Tree for unweighted graph: In an unweighted graph, the 

shortest path is the path with the least number of edges. With Breadth First, we always reach a vertex from a 

given source using the minimum number of edges. Also, in the case of unweighted graphs, any spanning tree 

is Minimum Spanning Tree and we can use either Depth or Breadth first traversal for finding a spanning tree.  

2. Minimum Spanning Tree for weighted graphs: We can also find Minimum Spanning Tree for 

weighted graphs using BFT, but the condition is that the weight should be non-negative and the same for each 

pair of vertices. 



 

 

3. Peer-to-Peer Networks: In Peer-to-Peer Networks like BitTorrent, Breadth First Search is used to 

find all neighbor nodes.  

4. Crawlers in Search Engines: Crawlers build an index using Breadth First. The idea is to start from 

the source page and follow all links from the source and keep doing the same. Depth First Traversal can also 

be used for crawlers, but the advantage of Breadth First Traversal is, the depth or levels of the built tree can be 

limited. 

5. Social Networking Websites: In social networks, we can find people within a given distance ‘k’ 

from a person using Breadth First Search till ‘k’ levels. 

6. GPS Navigation systems: Breadth First Search is used to find all neighboring locations. 

7. Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to reach 

all nodes. 

8. In Garbage Collection: Breadth First Search is used in copying garbage collection using Cheney’s 

algorithm. Breadth First Search is preferred over Depth First Search because of a better locality of reference.  

9. Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth 

First Search can be used to detect a cycle. We can use BFS to detect cycle in a directed graph also. 

10. Ford–Fulkerson algorithm In Ford – Fulkerson algorithm, we can either use Breadth First or 

Depth First Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces the worst -

case time complexity to O(VE2). 

11. To test if a graph is Bipartite: We can either use Breadth First or Depth First Traversal. 

12. Path Finding: We can either use Breadth First or Depth First Traversal to find if there is a path 

between two vertices.  

13. Finding all nodes within one connected component: We can either use Breadth First or Depth 

First Traversal to find all nodes reachable from a given node.  

14. AI: In AI, BFS is used in traversing a game tree to find the best move. 

15. Network Security: In the field of network security, BFS is used in traversing a network to find all 

the devices connected to it. 

16. Connected Component: We can find all connected components in an undirected graph. 

17. Topological sorting: BFS can be used to find a topological ordering of the nodes in a directed 

acyclic graph (DAG). 

18. Image processing: BFS can be used to flood-fill an image with a particular color or to find 

connected components of pixels. 

19. Recommender systems: BFS can be used to find similar items in a large dataset by traversing the 

items’ connections in a similarity graph. 

20. Other usages: Many algorithms like Prim’s Minimum Spanning Tree and Dijkstra’s Single Source 

Shortest Path use structures similar to Breadth First Search.  

 

Advantages of Breadth First Search: 

 

 BFS will never get trapped exploring the useful path forever. 

 If there is a solution, BFS will definitely find it. 

 If there is more than one solution then BFS can find the minimal one that requires less number of steps.  

 Low storage requirement – linear with depth. 

 Easily programmable. 

 

Disadvantages of Breadth First Search: 

 

 The main drawback of BFS is its memory requirement. Since each level of the graph must be saved in 

order to generate the next level and the amount of memory is proportional to the number of nodes 

stored the space complexity of BFS is O(bd ), where b is the branching factor(the number of children at 

each node, the outdegree) and d is the depth.  

 As a result, BFS is severely space-bound in practice so will exhaust the memory available on typical 

computers in a matter of minutes. 

https://www.geeksforgeeks.org/how-bittorrent-works/
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/
https://www.geeksforgeeks.org/detect-cycle-in-a-directed-graph-using-bfs/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
https://www.geeksforgeeks.org/bipartite-graph/
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
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DESIGN AND ANALYSIS OF ALGORITHMS 

 
UNIT V 

Problem Solving Methods: The General Method – The 8– Queens Problem – Sum of Subsets– 

Graph Coloring –Hamiltonian Cycles – Branch and Bound: General Method – LC Branch and Bound 

– FIFO Branch and Bound. 

 5.1. BACKTRACKING GENERAL METHOD 
 

 Backtracking is one of the techniques that can be used to solve the problem. We can write the 

algorithm using this strategy. 

  It uses the Brute force search to solve the problem, and the brute force search says that for the given 

problem, we try to make all the possible solutions and pick out the best solution from all the desired 

solutions.  

 This rule is also followed in dynamic programming, but dynamic programming is used for solving 

optimization problems. 

  In contrast, backtracking is not used in solving optimization problems. Backtracking is used when 

we have multiple solutions, and we require all those solutions. 

 Backtracking name itself suggests that we are going back and coming forward; if it satisfies the 

condition, then return success, else we go back again.  

 It is used to solve a problem in which a sequence of objects is chosen from a specified set so that the 

sequence satisfies some criteria. 
 

 

When to use a Backtracking algorithm? 

 

 When we have multiple choices, then we make the decisions from the available choices. In the 

following cases, we need to use the backtracking algorithm: 

o A piece of sufficient information is not available to make the best choice, so we use the 

backtracking strategy to try out all the possible solutions. 

o Each decision leads to a new set of choices. Then again, we backtrack to make new 

decisions. In this case, we need to use the backtracking strategy. 
 

How does Backtracking work? 

 

 Backtracking is a systematic method of trying out various sequences of decisions until you find out 

that works. Let's understand through an example. 
 



 

 We start with a start node. First, we move to node A. Since it is not a feasible solution so we move to 

the next node, i.e., B. B is also not a feasible solution, and it is a dead-end so we backtrack from node 

B to node A. 
 

 

 

 

 Suppose another path exists from node A to node C. So, we move from node A to node C. It is also a 

dead- end, so again backtrack from node C to node A. We move from node A to the starting node. 
 

 
 

 

  

 

 Now we will check any other path exists from the starting node. So, we move from start node to the 

node D. Since it is not a feasible solution so we move from node D to node E. The node E is also not 

a feasible solution. It is a dead end so we backtrack from node E to node D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Suppose another path exists from node D to node F. So, we move from node D to node F. Since it is 

not a feasible solution and it's a dead-end, we check for another path from node F. 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 Suppose there is another path exists from the node F to node G so move from node F to node G. The 

node G is a success node. 
 

 

 

 

 

 

 

 

 

 
 
 

The terms related to the backtracking are: 

o Live node: The nodes that can be further generated are known as live nodes. 

o E node: The nodes whose children are being generated and become a success node. 

o Success node: The node is said to be a success node if it provides a feasible solution. 

o Dead node: The node which cannot be further generated and also does not provide a 

feasible solution is known as a dead node. 

 Many problems can be solved by backtracking strategy, and that problems satisfy complex set of 

constraints, and these constraints are of two types: 

o Implicit constraint: It is a rule in which how each element in a tuple is related. 

o Explicit constraint: The rules that restrict each element to be chosen from the given set. 

 
Applications of Backtracking: 

o N-queen problem 

o Sum of subset problem 

o Graph coloring 

o Hamiliton cycle 



 

Difference between the Backtracking and Recursion: 

 

 Recursion is a technique that calls the same function again and again until you reach the base case. 

 Backtracking is an algorithm that finds all the possible solutions and selects the desired solution from 

the given set of solutions. 

 

 5.2. THE 8– QUEENS PROBLEM 

 

 The eight queens problem is the problem of placing eight queens on an 8×8 chessboard such that 

none of them attack one another (no two are in the same row, column, or diagonal).  

 More generally, the n queens problem places n queens on an n×n chessboard. There are different 

solutions for the problem. 
 



 

Solutions:  

 The eight queens puzzle has 92 distinct solutions. If solutions that differ only by the symmetry 

operations of rotation and reflection of the board are counted as one, the puzzle has 12 solutions. 

 These are called fundamental solutions; representatives of each are shown below. A fundamental 

solution usually has eight variants (including its original form) obtained by rotating 90, 180, or 270° 

and then reflecting each of the four rotational variants in a mirror in a fixed position.  

 However, should a solution be equivalent to its own 90° rotation (as happens to one solution with 

five queens on a 5×5 board), that fundamental solution will have only two variants (itself and its 

reflection).  

 Should a solution be equivalent to its own 180° rotation (but not to its 90° rotation), it will have four 

variants (itself and its reflection, its 90° rotation and the reflection of that).  

 If n > 1, it is not possible for a solution to be equivalent to its own reflection because that would 

require two queens to be facing each other. Of the 12 fundamental solutions to the problem with eight 

queens on an 8×8 board, exactly one (solution 12 below) is equal to its own 180° rotation, and none 

is equal to its 90° rotation; thus, the number of distinct solutions is 11×8 + 1×4 = 92. All fundamental 

solutions are presented below 
 



 

 5.3. SUM OF SUBSETS 

  
 Suppose we are given n distinct positive numbers( usually called weights) and we desire to find all 

combinations of these numbers whose sum are m. This is called the sum of subsets problem. 

 (Example 1) given positive numbers Wi, 1<=i<=n, and m, this problem calls for finding all subsets of wi 

whose sums are m. For example, if n=4, (w1,w2,w3,w4)=(7,11,13,24) and m=31, then the desired subsets 

are (7,11,13) and (7,24). Rather than representing the solution vector by wi which sum to m, we could 

represent the solution vector by giving the indices of these wi. 

 Now the two solutions are described by the 

vectors (1,2,3) and (1,4). 

 In general all solution subset is represented by n-tuple(X1,X2,X3,…Xn) such that XiÎ {0,1},1<=i<=n. 

The Xi is 0 if wi is not chosen and xi=1 if wi is chosen. The solutions to the above instances are (1,1,1,0) 

and (1,0,0,1).  

 This formulation expresses all solutions using a fixed sized tuple. 

 The sum of sub set is based on fixed size tuple. Let us draw a tree structure for fixed tuple size formulation. 

 All paths from root to a leaf node define a solution space. The left subtree of the root defines all subsets 

containing W1 and the right subtree defines all subsets not containing W1 and so on. 

 

Step 1) Start with an empty set 

Step 2) Add next element in the list to the sub set  

Step 3)If the subset is having sum = m then stop with that sub set as solution. 

Step 4)If the sub set is not feasible or if we have reached the end of the set then backtrack through 

the subset until we find the most suitable value. 

Step 5) if the subset is feasible then repeat step 2 

Step 6) if we have visited all elements without finding a suitable subset and if no 

backtracking is possible, then stop with no solution. 

 s – sum of all selected elements 

 k – denotes the index of chosen element 

 r – initially sum of all elements. After selection of 

 some element from the set subtract the chosen value from r 

each time. W(1:n) – represents set containing n elements. 

 X[i]-solution vector 1<=i<=k 

 

Algorithm for sum of subsets: 

 

Algorithm sumofsubsets(s,k,r) 

{ 

X[k]:=1; 

if (s+w[k]=m) then write (x[1:k]); // subset found else 

if (s+w[k]+w[k+1]<=m) then 

sumofsubsets(s+w[k],k+1,r-w[k]); 

//generate right child and evaluate Bk. 

if ((s+r-w[k]>=m) and (s+w[k+1]<=m)) then 

{ 

X[k]:=0; 

sumofsubsets(s,k+1,r-w[k]); 

} 

} 



 

Example: 

 n=4, (w1,w2,w3,w4)=(7,11,13,24) and m=31 

Solution Vector=(x[1],x[2],x[3],x[4]) 
 

 

Portion of state space Tree 

 

Solution A = {1,1,1,0} 

Solution B = {1,0,0,1} 



 

Example 2: 

n=6, m=30 and w[1:6]={5,10,12,13,15,18}. 

Portion of the state space tree generated by sum of subsets 

 
State space tree with solution 

The rectangular nodes list the values of s,k and r. 

Circular nodes represent points at which subsets with 

sums m are printed out. 

Solution A = (1,1,0,0,1) 

Solution B = (1,0,1,1) 

Solution C = (0,0,1,0,0,1) 

Note that the tree contains only 23 rectangular nodes. 

The full space tree for n=6 contains 26-1=63 nodes from which calls could 

be made. 

 

 5.4. GRAPH COLORING 

  
 Let G be a graph and m be a given positive integer. We want to discover whether the node of G can be 

colored in such a way that no two adjacent nodes have the same color yet only m colors are used. 

 This is termed the m-colorability decision problem. Note that if d is the degree of the given graph, then 

it can be colored with d+1 colors. The m-colorability optimization problem asks for the smallest integer 

m for which the graph G can be colored. The integer is referred to as the chromatic number of the 

graph. 

 For example the following graph can be colored with three colors 1, 2 and 3. 

 The color of each node is indicated next to it. It can also be seen that thee colors are needed to color 

this graph and hence this graph’s chromatic number is 3. 



 

 
 

 

State space tree for coloring a graph containing 3 nodes using 3 colors 

 
Fig)State space tree for mColoring when n=3 and m=3 

 
 The algorithm mcoloring was formed using the recursive backtracking schema. 

  The graph is represented by its Boolean adjacency matrix G[1:n,1:n].  

 All assignments of 1,2,…m to the vertices of the graph such that adjacent vertices are assigned 

distinct integers are printed. K is the index of the next vertex to color. 

 

 

 

 

 

 

 

 



 

Algorithm for graph coloring: 

 

Algorithm mcoloring(k) 

{ 

repeat 

{ 

nextvalue(k); 

if (x[k] = 0) then return; 

if (k=n) then 

write(x[1:n]); 

else 

mcoloring(k+1); 

}until(false); 

} 
 

No of vertices= n 

No of colors= m 

 Solution vector = X[1], X[2], X[3] X[n] The values of solution vector may belongs to {0,1,2,3..m} 

The following Algorithm is used to generate next color. 

 
 Assume that X[1],..x[k-1] have been assigned integer values in the range [1,m] such that adjacent 

vertices have distinct integers. 

 A value for x[k] is determined in the range [0,m]. 

 

 X[k] is assigned the next highest numbered color while maintaining distinctness from the adjacent 

vertices of vertex k. if no such color exists, the x[k]=0. 

 

Algorithm nextvalue(k) 

{ 

Repeat 

{ 

X[k]=(x[k]+1)mod(m+1); // next highest color 

if (x[k]=0) then 

return; //all colors have been used 

for j:=1 to n do 

{ 

if ((G[k,j]!=0) and (x[k]=x[j])) then break; 

//g[k,j] an edge and 

//vertices k and j have same color 

} 

if (j=n+1) then return; 

}until (false); 

} 

 



 

                              Adjacency Matrix 
 



 

 5.5.  HAMILTONIAN CYCLES 

 Let G=(V,E) be a connected graph with n vertices. A Hamiltonian cycle is a round trip path along n 

edges of G that visits every vertex once and returns to its starting position. In other words if a 

Hamiltonian cycle begins at some vertex v1 G and the vertices of G are visited in the order v1, 

v2,…vn+1 then the edges (vi,vi+1) are in E, 1<=i<=n, and the vi are distinct except for v1 and vn+1, 

which are equal. 
 

 
 
 

 To check whether there is a Hamiltonian cycle or not we may use backtracking method. The graph may be 

directed or undirected. Only distinct cycles are output. 

 The backtracking solution vector (X1,X2,X3,…Xn) is defined so that xi represents the ith visited vertex 

of the proposed cycle. 

 Now all we need to do is determine how to compute the set of possible vertices for xk if x1,..xk-1 have 

already been chosen. If k=1 then x1 can be any of the n vertices. 

 The algorithm Hamiltonian() uses the recursive formulation of backtracking to find all the 
Hamiltonian cycles of a graph. The graph is stored as an adjacency matrix G[1:n,1:n]. All cycles 

begin at node 1. 

 

Algorithm for Hamiltonian Cycle: 
 

Algorithm Hamiltonian(k) 
{ 
Repeat 
{ 
nextvalue(k); 
if (x[k]=0) then return; 
if (k=n) then write (x[1:n]); 
else 
Hamiltonian(k+1); 
}until(false); 
} 

 



 

 

 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 



 

 
 
 

 

 5.6. BRANCH AND BOUND 

 
Introduction:  

 

 Branch and Bound refers to all state space search methods in which all children of the Enode are 

generated before any other live node becomes the E-Node. Branch and Bound is the generalization of 

both graph search strategies, BFS and D-search. 

 A BFS like state space search is called as FIFO (First in first out) search as the list of live nodes in a 

first in first out.   A D-search like state space search is called as LIFO (last in first out) search as the 

list of live nodes in a last in first out list. 

 Live node is a node that has been generated but whose children have not yet been generated. 

 E-node is a live node whose children are currently being explored. In other words, an E-node is a node 

currently being expanded. 

 Dead node is a generated anode that is not be expanded or explored any further. All children of a dead 

node have already been expanded. 

 3 types of search strategies: 
 

1. FIFO (First In First Out) 

2. LIFO (Last In First Out) 

3. LC (Least Cost) 

4.  
5.7. LC (LEAST COST) BRANCH AND BOUND SEARCH 

 

 In both FIFO and LIFO Branch and Bound the selection rules for the next E-node in rigid and blind. 

The selection rule for the next E-node does not give any preferences to a node that has a very good 

chance of getting the search to an answer node quickly. 

 In this we will use ranking function or cost function. We generate the children of E-node, among 

these live nodes; we select a node which has minimum cost. By using ranking function we will 

calculate the cost of each node. 



 

 

 

 Initially we will take node 1 as E-node. Generate children of node 1, the children are 2, 3, 4. By 

using ranking function we will calculate the cost of 2, 3, 4 nodes is ĉ =2, ĉ =3, ĉ =4 respectively. 

 Now we will select a node which has minimum cost i.,e node 2. For node 2, the children are 5, 6. 

Between 5 and 6 we will select the node 6 since its cost minimum.  

 Generate children of node 6 i.,e 12 and 13. We will select node 12 since its cost (ĉ =1) is 

minimum. More over 12 is the answer node. So, we terminate search process. 



 

 
 

5.8. FIFO BRANCH AND BOUND SEARCH 

 

 For this we will use a data structure called Queue. Initially Queue is empty. 
 
 

Example: 

 
 

 Assume the node 12 is an answer node (solution) 

 In FIFO search, first we will take E-node as a node 1. 

 Next we generate the children of node 1. We will place all these live nodes in a queue. 



 

 
 

 Now we will delete an element from queue, i.e. node 2, next generate children of node 2 and 
place in this queue. 

 
 Next, delete an element from queue and take it as E-node, generate the children of node 3, 7, 8 are 

children of 3 and these live nodes are killed by bounding functions. So we will not include in the 

queue. 

 Again delete an element an from queue. Take it as E-node, generate the children of 4. Node 9 is 
generated and killed by boundary function. 

 
 

 Next, delete an element from queue.  

 Generate children of nodes 5, i.e., nodes 10 and 11 are generated and by boundary function, last 
node in queue is 6.  

 The child of node 6 is 12 and it satisfies the conditions of the problem, which is the answer node, so 
search terminates. 

 

BOUNDING 
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