THIRUVALLUVARUNIVERSITY SERKKADU VELLORE- 632115

M.Sc. Mathematics –2022-2023 onwards

Programme Objectives:

- 1. Developthestudentwithcriticalthinkingandanalyticskills.
- 2. Enhancetheknowledgeofstudentsforpursuinghigherstudies.
- 3. Providein-depthknowledgetodesignthemathematicalmodelsinreallifeproblems.
- 4. Expertisethestudentstoexcelintheirprofessionalcareer.
- 5. Provide the students to understand the mathematical concepts visually.

ProgrammeEducationalObjectives:

- 1. ProvideastrongfoundationinpureandappliedMathematics.
- 2. Motivatethestudentstopursuehigherstudies.
- 3. Preparethestudentstoworkeffectivelyina group orindividually.
- $4. \ Enrichthestudent to follow the ethical and professional values to serve the community.$
- 5. Encouragethestudentforlifelonglearning.

Programme Specific Outcomes:

- 1. UnderstandthetheoreticalknowledgeofMathematicalconcepts.
- 2. Developtheproblemssolvingskills.
- 3. Collaborate with the multi-disciplinary areas.
- 4. CreativelyapplyingtheknowledgeofMathematicsinselectedreallifesituations.
- 5. Appreciate the emphasis give nonteaching the mathematical concepts through counterexamples.
- 6. Gettheknowledgeofinter-disciplinaryapproach oflearning.
- DeveloptheskilltosolveproblemswhichappearinthevariousexaminationslikeCSIR-NET,SET,IAS, etc
- 8. Inculcate the creative and develop research level thinking in the field of pure and applied Mathematics.
- 9. Encouragetogo forhigherlearninginresearch.
- 10. Understandtheethicalvaluesandhumanvaluestoappreciatetheculturaldiversityandpro motethesocial harmony.

Programme Outcomes:

- 1. Acquirein-depthknowledgeofMathematicsboth intheoryandapplication.
- Identifymathematicalandcomputationalmethodsinordertosolvecomprehensiveproble ms.
- $3. \ \ Recognize the various specialized areas of advanced mathematics and its applications.$
- 4. Analyzeandinterpretdatatocreateanddesignnewknowledgefor complexproblems.
- 5. Develop themathematical models for the applications of mathematics in real lifesituations.
- 6. Exhibitthepotentialtoeffectivelyaccomplishtasksindependentlyandasamemberorlead erindiverseteams, and in multidisciplinary settings.
- 7. Developtheskillstocrackthevariouscompetitive examination.
- 8. Abilitytoengageinlife-longlearninginthecontextoftherapiddevelopmentsinthefield.
- 9. Demonstrate the ability towrited is sertations, reports, make effective presentations and do cumentation.
- 10. Commitmenttoprofessionalethicsandsocialresponsibilities.

THIRUVALLUVARUNIVERSITY MASTEROFSCIENCE

(Witheffectfrom2022–2023)

The Course of Study and the Scheme of Examination

 $@ Compulsory Courses \ don't change this category. \ Number \ of core \ papers \ \& Practical may be \ changed$

Sl.	Study Con	nponents	ins. hrs/	Credit	Title of the Paper	Ma	ximum M	arks		
<i>lo</i> .	Course	e Title	week	Creau	Tute of the Faper	CIA	Uni.	Total		
	Sl	EMESTER	I				Exam	10141		
			6	5	Algebra-I	25	75	100		
	Core		6	5	Real Analysis –I	25	75	100		
			6	4	Ordinary Differential Equations	25	75	100		
		I	nternal E	lective fo	or same major students (Choose any one)					
	@ Core				A. Probability Theory					
	Elective	Paper-1	6	3	B. Mechanics	25	75	100		
	Elective				B. Mechanics C. Graph Theory r other major students (Inter/multi disciplinary) A. Basic Mathematics					
		External	Elective	for other		pers) 25 75 100				
	@ Open Paner					25	75	100		
	_	Paper-1	6		B. Mathematical Foundations					
	Elective Paper				C. Mathematical Modeling					
		C. Mathematical Modeling								
			30	20						
			30	20						
	SF	EMESTER I		20		CIA	Uni. Exam	Total		
	SF	EMESTER I		5	Algebra-II	<i>CIA</i> 25		Total		
	SE	EMESTER I	I		Algebra-II Real Analysis –II		Exam			
		EMESTER I	I 6	5	-	25	Exam 75	100		
			6 6 6	5 5 4	Real Analysis –II	25 25	75 75	100		
	Core		6 6 6	5 5 4	Real Analysis –II Partial Differential Equations	25 25	75 75	100		
	Core @ Core	I	6 6 6	5 5 4	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics	25 25	75 75	100		
	Core		6 6 6 nternal E	5 5 4	Real Analysis –II Partial Differential Equations or same major students (Choose any one)	25 25 25 25	Exam 75 75 75	100 100 100		
	Core @ Core	Paper-2	6 6 6 nternal E	5 5 4 elective for	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics B. Fuzzy Set Theory C. Difference Equations	25 25 25 25 25	Exam 75 75 75	100 100 100		
	Core @ Core Elective	Paper-2	6 6 6 nternal E	5 5 4 elective for	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics B. Fuzzy Set Theory	25 25 25 25 25	Exam 75 75 75	100 100 100		
	© Core Elective	Paper-2 External	6 6 6 Internal E	5 5 4 Clective for	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics B. Fuzzy Set Theory C. Difference Equations or major students (Inter/multi disciplinary page)	25 25 25 25 25	Exam 75 75 75	100 100 100		
	Core @ Core Elective	Paper-2	6 6 6 Internal E	5 5 4 Clective for	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics B. Fuzzy Set Theory C. Difference Equations or major students (Inter/multi disciplinary particular) A. Fundamentals of Insurance	25 25 25 25 25 pers)	Exam 75 75 75 75	100 100 100		
	© Core Elective	Paper-2 External Paper-2	6 6 6 Internal E	5 5 4 Clective for	Real Analysis –II Partial Differential Equations or same major students (Choose any one) A.Mathematical Statistics B. Fuzzy Set Theory C. Difference Equations or major students (Inter/multi disciplinary particular descriptions) A. Fundamentals of Insurance B. Numerical Methods	25 25 25 25 25 pers)	Exam 75 75 75 75	100 100 100		

Sl.	Study Com	ponents	ins.	Credit	Tisle of the Daner	Ma	ximum M	arks
No.	Course	Title	hrs / week	Creau	Title of the Paper	CIA	Uni.	Total
	SEM	IESTER II	I			CIII	Exam	101111
			6	6	Complex Analysis –I	25	75	100
	Core		6	5	Topology	25	75	100
			6	5	Differential Geometry	25	75	100
		In	ternal El	ective fo	r same major students (Choose any one)			
	@ Core Elective	Paper-3	6	3	A. LaTeX B. Discrete Mathematics C. Operations Research	25	75	100
		External	Elective	for other	major students (Inter/multi disciplinary pa	pers)		
	@ Open Elective	Paper-3	6	3	A. Mathematical Biology B. Quantitative Techniques C. SCILAB	25	75	100
	@MOOC Courses		-	2				100
	@Field Study			2		100		100
			30	26				
	SEM	MESTER IV	7			CIA	Uni. Exam	Total
	Core		5	4	Complex Analysis –II	25	75	100
			5	4	Fluid Dynamics	25	75	100
]		5	5	Functional Analysis	25	75	100
	@ Core	Project Compulsory	5	5	Project with viva voce	(75 P	00 Project viva)	100
		In	ternal El	ective fo	r same major students (Choose any one)			
	@Core Elective	Paper-4	5	3	A. Number Theory and Cryptography B. Advanced Numerical Analysis C. Calculus of Variations and Integral Equations	25	75	100
		External	Elective	for other	major students (Inter/multi disciplinary pa	pers)		
	@ Open Elective (Non-Major)	Paper-4	5	3	A. Mathematical Economics B.Entrepreneurial Development C. Programming in C++	25	75	100
			30	24				
			120	92				

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Core Credit: 5

Paper code: Name of the Paper: Algebra-I

Hours of Teaching:90 hrs

Course Objectives:

The objective of this course are to:

- 1. Study and develop the concept of group action and learn Sylow's theorem and its applications.
- 2. Introducing structure theorem on abelian group and studying its applications.
- 3. Get the knowledge on algebraic structure Modules and its properties
- 4. Understand canonical forms of linear transformations.
- 5. Demonstrate insight into Linear algebra with focus on properties of matrix of transformations.

Course Outcomes:

After successful completion on the course the student will be able to

- CO1 Demonstrate ability to think group actions critically by Cayley's theorem and apply the Sylow's theorems to describe the structure of certain finite abelian groups
- CO2 Understand the concept of the internal and external direct product of groups. Also, apply the structure theorem on abelian groups to find the non-isomorphic abelian groups of certain orders.
- CO3 Check the irreducibility of given polynomial in the defined Field
- **CO4** Know about Module and, difference between the Algebraic structures, Vector space and Module.
- CO5 Acquire the knowledge of the Linear transformation in canonical forms. Also, the matrix form of linear transformation and its properties.

Matching Table:

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	No	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 Group Theory

18 hours

Another counting principle - class equation for finite groups and its applications - Sylow's theorems (For theorem 2.12.1, Only First proof)

Chapter 2: Sections 2.11 and 2.12

Unit – 2 Group Theory (Continuation)

18 hours

Direct products - Finite abelian groups

Chapter 2: Sections 2.13 and 2.14 (Only Theorem 2.14.1))

Unit -3 Ring Theory

18 hours

Polynomial Rings – Polynomials over the Rational Field

Chapter 3: Sections 3.9 to 3.10

Unit – 4 Modules and Linear Transformations

18 hours

Modules –LinearTransformations: Nilpotent transformations - Jordan form - rational canonical form.

Chapter 4: Section 4.5

Chapter 6: Sections 6.5to 6.7

Unit – 5 Linear Transformations

18 hours

Hermitian, unitary, normal transformations, real quadratic form.

Chapter 6: Sections 6.10 and 6.11

Text book:

I.N. Herstein, Topics in Algebra, 2nd Edition. Wiley.1975

Reference Books:

- 1. D.S.Dummit and R.M.Foote. Abstract Algebra. Wiley 2003
- 2. M. Artin, Algebra, Prentice Hall of India, 1991
- 3. J.A. Gallian. Contemporary Abstract Algebra. 4th Edition. Narosa Publishing 2011
- 4. P.B.Battacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra(II Edition) Cambridge University Press, 1997.(Indian Edition)
- 5. I.S. Luther and I.B.S. Passi, Algebra, Vol.I Groups(1996), Vol. II Rings, Narosa Publishing House, New Delhi, 1999.
- 6. L. Smith, Linear transformation: Example and Applications. In: Linear Algebra, Undergraduate texts in Mathematics, Springer, New york. NY, 1998.

E-Materials:

https://nptel.ac.in/courses/111108098/

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	M	S	S	S
CO2	S	S	M	M	M	S	M	S	S	S
CO3	S	S	M	M	S	S	M	S	S	S
CO4	S	S	M	M	S	S	M	S	S	S
CO5	S	S	M	M	S	S	M	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Core Credit: 5

Paper code: Name of the Paper: RealAnalysis-I

Hours of Teaching:90 hrs

CourseObjectives:

Theobjectives of the courseis to

- 1. Workcomfortablywithfunctionsofbounded variation
- 2. StudytheRiemann-StieltjesIntegration
- 3. Expertise the students to excel in integration under integral sign.
- 4. Get the knowledge about the convergence of infinite series, in finite product and uniform convergence and its interplay between various limiting operations.
- 5. Provide the students to understands uniform convergence and continuity of functions.

Course Outcomes:

After successful completion on the course the student will be able to

- **CO1** Understandtheconceptoffunctionsofboundedvariation.
- **CO2** Acquires knowledge on Riemann Stieltjes integration andtosolveitsrelatedproblems.
- **CO3** Work effectively in integration under integral sign.
- **CO4** Provide a strong foundation in the study of the convergence of infinite series, infinite product and uniform convergence and its interplay between various limiting operations.
- **CO5** Know about the convergence of sequences of functions.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 FunctionsofBoundedVariation

18 hours

Introduction-Properties of monotonic functions-Functions of bounded variation-Total variatio

Additivepropertyoftotalvariation-Totalvariationon[a,x]asafunctionofx-

Functions of bounded variation expressed as the difference of two increasing functions-

Continuous functions of bounded variation.

Chapter6: Sections 6.1 to 6.8

Unit – 2 The Riemann-Stieltjes Integral

18 hours

Introduction-Notation-ThedefinitionoftheRiemann-Stieltjesintegral-LinearProperties-

Integrationbyparts-ChangeofvariableinaRiemann-Stieltjesintegral-ReductiontoaRiemannIntegral-

Euler's summation formula-Monotonically increasing integrators, Upper and lower integrals-

Additive and linearity properties of upper and lower integrals - Riemann's condition-Comparison

Theorems

Chapter 7: Sections 7.1 to 7.14

Unit – 3 TheRiemann-StieltjesIntegral(Contd.)

18 hours

Integrators of bounded variation-Sufficient conditions for the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of Riemann Stieltjes integrals-like the conditions of the existence of the conditions of the existence of the existenc

Necessary conditions for the existence of Riemann-

StieltjesintegralsMeanvaluetheoremsforRiemann-Stieltjesintegrals-

Theintegrals as a function of the interval-Second fundamental theorem of integral calculus-

ChangeofvariableinaRiemannintegral-SecondMeanValueTheoremforRiemannintegral-Riemann-

Stieltjesintegralsdependingonaparameter-Differentiation under theintegral sign.

Chapter7: Sections 7.15 to 7.24

Unit – 4 InfiniteSeries and Infinite Products

18 hours

Absoluteandconditionalconvergence-Dirichlet'stestandAbel'stest-Rearrangementofseries-

Riemann's theoremon conditionally convergent series. Double sequences - Double series -

Rearrangementtheoremfordoubleseries-Asufficientconditionforequalityofiteratedseries

Multiplication of series-Cesaro summability-Infinite products.

Chapter8: Sections 8.8,8.15, 8.17, 8.18, 8.20,8.21 to 8.26

Unit – 5 Sequence of Functions

18 hours

Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions - Definition of uniform convergence - Uniform convergence and continuity - The Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Uniform convergence and Riemann - Stieltjes integration - Uniform convergence and differentiation-Sufficient condition for uniform convergence of series-

Meanconvergence. **Chapter9**: Sections 9.1 to 9.6, 9.8, 9.10, 9.11, 9.13

Text Book:

TomM.Apostol:MathematicalAnalysis,2ndEdition,Addison-

WesleyPublishingCompanyInc. NewYork,(1997).

ReferenceBooks:

- 1. R.G. Bartle, Real Analysis, (1976), John Wileyandsons Inc.
- 2. W.Rudin, Principle of Mathematical Analysis (1976), McGraw Hill Company, New York.
- 3. S.C.MalikandSavitaArora,MathematicalAnalysis(1991),WileyEasternLimited,NewDel hi.
- 4. SanjayAroraandBansiLal,IntroductiontoRealAnalysis(1991),SatyaPrakashan,NewDelh i
- 5. A.L.GuptaandN.R.Gupta, PrincipleofRealAnalysis (2003), PearsonEducation.

E-Materials

https://mathworld.wolfram.com/

https://onlinecourses.nptel.ac.in/noc21_ma63/preview

https://ocw.mit.edu/courses/mathematics/18-100a-introduction-to-analysis-fall-2012/

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	S	M
CO2	S	S	M	M	S	M	S	S	S	M
CO3	S	S	M	M	S	M	S	S	S	M
CO4	S	S	M	M	S	M	S	S	S	M
CO5	S	S	M	M	S	M	S	S	S	M

^{*} PO – Programme Outcome, CO – Course Outcomes

THIRUVALLUVAR UNIVERSITY, VELLORE – 632115

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics -2022 - 2023 onwards

Semester: I Paper type: Core Credit: 4

Paper code: Name of the Paper: Ordinary Differential Equations

Hours of Teaching:90 hrs

Course Objectives:

The main objectives of this course are to:

- 1. Understand the theory and methods of Ordinary Differential Equations (ODEs).
- 2. Apply and solve ODEs applications from various emerging technologies.
- 3. Know about the concepts and solving methods of Second and nthorder linear differential equations.
- 4. Study the concepts and solving methods of differential equations with variable coefficients and regular singular point.
- 5. Examine the existence and uniqueness of solutions of differential equations.

Course Outcomes:

After successful completion of the course the student will be able to

- **CO1** Analyze the methods of second order homogeneous and non-homogeneous equations.
- **CO2** Apply and solve the higher order homogeneous and non-homogeneous equations.
- **CO3** Define the methods to solve linear equations with variable coefficients.
- **CO4** Discuss the linear equations with regular singular points.
- **CO5** Construct the solutions for first order equations.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	No	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 Linear Equations with Constant Coefficients

18 hours

Second order homogeneous equations - Initial value problems for second order - Linear dependence and independence - A formula for the Wronskian - The non - homogeneous equation of order two.

Chapter 2:Sections 1 to 6

Unit – 2 Linear Equations with Constant Coefficients (Continuation) 18 hours

Homogeneous equations of order n - Initial value problems for order n - equations with real constants - Non-homogeneous equations of order n - Annihilator method - Algebra of constant coefficient operators.

Chapter 2:Sections 7 to 12

Unit – 3 Linear Equations with Variable Coefficients

18 hours

Initial value problems - Existence and Uniqueness theorems - Solutions to solve a non-homogeneous equation - The Wronskian and linear independence - Reduction of the order of homogeneous equations - Homogeneous equation with analytic coefficients - The Legendre-Equation.

Chapter 3: Sections 1 to 8

Unit – 4 Linear Equations with Regular Singular Points

18 hours

Euler equation - Second order equations with regular singular points - general and exceptional cases - Bessel equation.

Chapter 4: Sections 1 to 4 and 6 to 8

Unit – 5 Existence and Uniqueness of Solutions to First Order Equations 18 hours

Equation with variables separated - Exact equations - The method of successive approximations - The Lipschitz condition - Convergence of the successive approximations.

Chapter 5: Sections 1 to 6

Text Book:

Earl A. Coddington, An introduction to ordinary differential equations (Indian Reprint), Prentice- Hall of India Ltd., New Delhi, 2009.

Reference Books:

- 1. Williams E. Boyce and Richard C. DI Prima, Elementary differential equations and boundary value problems, John Wiley and sons, New York, 1967.
- 2. George F Simmons, Differential equations with applications and historical notes, Tata McGraw Hill, New Delhi, 1974.
- 3. W.T.Reid, Ordinary differential equations, John Wiley and sons, New York, 1971.
- 4. M.D.Raisinghania, Advanced differential equations, S.Chand & Company Ltd., New Delhi, 2001.
- 5. N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.

E-Materials:

- 1. https://nptel.ac.in/courses/111104031
- 2. https://nptel.ac.in/courses/122107037
- 3. https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/
- 4. https://nptel.ac.in/courses/111108081/
- 5. https://ocw.mit.edu/courses/mathematics/18-034-honors-differential-equations-spring-2009/syllabus/

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	M	L
CO2	S	S	M	L	S	M	S	S	M	M
CO3	S	S	M	S	M	S	M	M	M	S
CO4	S	S	M	M	M	S	M	M	M	S
CO5	S	S	M	L	S	S	S	S	M	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Probability Theory

Hours of Teaching:90 hrs

Course Objectives:

The main objectives of this course are to:

- 1. Study basic notions of experiments, events, probability, random variables and probability distributions.
- 2. Acquire knowledge on various parameters and measures of the probability distributions.
- 3. Educatethecharacteristic functions and its properties.
- 4. Inculcatethespecialtypes of discrete and continuous probability distributions.
- $5. \quad Learn the strong theoretical background about the limit theorems and its consequences$

Course Outcomes:

After successful completion of the course the student will be able to

- **CO1** Analyze the basics of probability and random variables.
- CO2 Understand to handle parameters of the distribution.
- CO3 Define the properties and functionalities of characteristic functions.
- CO4 Discuss the various special probability distributions.
- CO5 Construct the solutions for real time applications using limits theorem.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	Yes
2	Yes	Yes	Yes	No	Yes	No
3	No	Yes	Yes	Yes	Yes	No
4	No	Yes	Yes	Yes	Yes	No
5	No	Yes	Yes	Yes	Yes	Yes

Unit – 1 ProbabilityandRandomVariables

18 hours

RandomExperiments—SampleSpace—RandomEvents—ProbabilityAxioms—Conditional Probability

– Mutual Exclusive Events – Independent Events – Addition andProduct Theorems on

Probability – Theorem of Total Probability – Baye's Theorem –Random Variables – Probability

Mass and Density Functions – Distribution – JointDistribution – MarginalDistribution –

Conditional Distribution – Independent RandomVariables – Functions of Random Variables.

Chapter 1: Sections 1.1 to 1.7

Chapter 2:Sections 2.1 to 2.9

Unit – 2 Parameters of the Distribution

18 hours

Mathematical Expectation – Moments – The Chebyshev Inequality – Absolute Moments – Order Parameters – Moments of Random Vectors – Regression of the First and SecondTypes.

Chapter3: Sections3.1 to 3.8

Unit – 3 CharacteristicFunctions

18 hours

Properties of Characteristic Functions – Characteristic Functions and Moments – Semi-Invariants – Characteristic Function of the Sum of the Independent Random Variables – DeterminationofDistributionFunctionbytheCharacteristicFunction–

Characteristic Function of Multidimensional Random Vectors-Probability Generating Functions.

Chapter4: Sections 4.1 to 4.7

Unit – 4 SpecialProbabilityDistributions

18 hours

Discrete Probability Distributions: One Point – Two Point – Bernoulli Trails – Binomial – Poisson – Polya – Hypergeometric Distributions – Continuous Probability Distributions: Uniform – Normal – Gamma – Beta – Cauchy – Laplace Distributions.

Chapter5: Sections 5.1 to 5.10

Unit – 5 LimitTheorems

18 hours

StochasticConvergence-BernoulliLawofLargeNumbers-

Convergence of Sequence of Distribution Functions - Levy-Cramer Theorems - The de Moivre-

Laplace Theorem -

The Lindeberg-Levy Theorem – LapunovTheroem.

Text Book:

M.Fisz, *ProbabilityTheoryandMathematicalStatistics*, 3rdEdition, JohnWileyandSonsInc., New York, 1963.

ReferenceBooks:

- 1. R.B.Ash, Real Analysis and Probability, Academic Press, New York, 1972.
- 2. K.L.Chung, *A Coursein Probability*, 2nd Edition, Academic Press, New York, 1974.
- 3. R.Durrett, *Probability: TheoryandExamples*, 5thEdition, Cambridge University Press, New York, 2019.
- 4. V.K.RohatgiandA.K.Md.EhsanesSaleh, *AnIntroductiontoProbabilityTheoryandMathematic* alStatistics, 2nd Edition, WileyEasternLtd., NewDelhi, 1988.
- 5. B.R.Bhat, *Modern Probability Theory An Introductory Textbook*, 4th Edition, New Age International Pvt. Ltd., New Delhi, 2014.

E-Materials:

- 1. https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/
- 2. https://www.coursera.org/learn/introductiontoprobability
- 3. https://swayam.gov.in/nd1_noc20_ma18/preview
- 4. https://onlinecourses.nptel.ac.in/noc21_ma24/preview

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	M	S	M	M	M	M
CO2	S	S	S	S	M	S	M	M	S	M
CO3	S	S	S	S	M	M	M	S	M	M
CO4	S	S	M	M	S	M	M	S	S	S
CO5	S	S	M	S	M	M	M	S	S	S

^{*} PO – Programme Outcome, CO – Course OutcomesL

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Mechanics

Hours of Teaching:90 hrs

CourseObjectives:

The main objectives of this course are to:

- 1. Understand mechanical systems under generalized coordinate systems.
- 2. Apply mechanics techniques in virtual work.
- 3. Develop the students ability to deal with Energyandmomentum.
- 4. Look at the conceptof Hamilton, Lagrange.
- 5. Discuss the Canonical Transformation.

CourseOutcomes

Afterthesuccessfulcompletionofthiscourse the students willbeableto:

- **CO1** Explain the basics concepts of mechanical systems undergeneralized coordinate systems.
- CO2 Identify the Lagrange's equations and its application.
- CO3 Derive the Hamilton Equation.
- **CO4** Analyze the Hamilton's Principle and Hamilton-Jacobi Equation and Separability.
- CO5 Discuss the LagrangeandPoissonbrackets.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit - 1 Mechanical Systems

18 hours

The Mechanical system-Generalized coordinates - Constraints-Virtual work - Energy and Momentum.

Chapter1: Sections 1.1 to 1.5

Unit – 2 Lagrange's Equations

18 hours

Derivation of Lagrange's equations- Examples - Integrals of motion.

Chapter 2: Sections 2.1 to 2.3

Unit – 3 Hamilton's Equations

18 hours

Hamilton's Principle - Hamilton's Equation - Other variational principle.

Chapter4: Sections 4.1 to 4.3

Unit – 4 Hamilton-JacobiTheory

18 hours

Hamilton Principal function - Hamilton-Jacobi Equation - Separability.

Chapter5: Sections 5.1 to 5.3

Unit-5 Canonical Transformation

18 hours

Differential forms and generating functions - Lagrange and Poisson brackets.

Chapter 6:Sections 6.1 and 6.3

Text Book:

D.T.Greenwood, Classical Dynamics, Prentice Hallof India, New Delhi, 1985.

ReferenceBooks:

- 1. H.Goldstein, Classical Mechanics, (2nd Edition) Narosa Publishing House, New Delhi.
- 2. N.C.RaneandP.S.C.Joag, *ClassicalMechanics*, TataMcGrawHill, 1991.
- 3. J.L.Synge and B.A.Griffth, *Principles of Mechanics* (3rd Edition) McGraw HillBookCo., New York, 1970.

E-Materials:

https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	L	M	S	L	S	L
CO2	M	S	M	S	S	L	M	S	L	M
CO3	S	S	M	S	M	L	S	S	M	L
CO4	M	L	M	L	S	M	M	L	L	S
CO5	S	S	M	S	L	M	M	S	L	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Graph theory

Hours of Teaching: 90 hrs

Course Objectives:

The main objective of this course are to:

- 1. Formally study and develop the basic concepts of Graphs.
- 2. Familiar with the notion and properties of varied types of graphs.
- 3. Understand concepts that helps to model real life situations into graphs.
- 4. Formulate and prove central theorems about trees, matching, connectivity, coloring and planarity of graphs.
- 5. Learn the proving techniques that are existing in each and every section of the unit and, motivate to do research in various fields of Graph theory.

CourseOutcomes

Afterthesuccessfulcompletionofthiscourse the students willbeableto:

- **CO1** Grasp features and properties of various types of graphs.
- CO2 Demonstrate capacity of illustration for mathematical reasoning through analyzing, providing and explaining concepts of Eulerian circuits and Hamiltonicity in graphs.
- CO3 Understand the definitions and properties of matching and independent sets.
- **CO4** Apply the concepts of graphs to model them in real life situations.
- **CO5** Explicate the applications of planarity and colorability.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit – 1 Graphs, Subgraphs And Trees

18 hours

Graphs - Graph Isomorphism - The Incidence and Adjacency Matrices - Subgraphs - Vertex

Degrees - Paths and Connection - Cycles - Trees - Cut Edges and Bonds - Cut Vertices- Cayley's

formula- Application: The shortest path problem.

Chapter 1: Sections 1.1 to 1.8

Chapter 2: Sections 2.1 to 2.4

Unit − 2 Connectivity, Euler Tours and Hamilton Cycles

18 hours

Connectivity - Blocks - Euler tours - Hamilton Cycles. Application: The travelling Salesman Problem.

Chapter 3: Sections 3.1 to 3.3

Chapter 4: Sections 4.1 to 4.2

Unit – 3 Matchings, Edge Colourings

18 hours

Matchings - Matchings and Coverings in Bipartite Graphs –Perfect matchings- Edge Colourings: Edge Chromatic Number - Vizing's Theorem. Application: Optimal Assignment Problem.

Chapter 5: Sections 5.1 to 5.3, 5.5

Chapter 6:Sections 6.1 to 6.2

Unit – 4 Independent Sets And Cliques, Vertex Colourings

18 hours

Independent sets - Ramsey's Theorem - Vertex Colourings: Chromatic Number - Brooks' Theorem - Hajos Conjecture- Chromoatic polynomial.

Chapter 7: Sections 7.1 to 7.2

Chapter 8: Sections 8.1 to 8.2, 8.4

Unit – 5 Planar Graphs

18 hours

Plane and planar Graphs - Dual graphs - Euler's Formula - The Five-Colour Theorem and the Four-Colour Conjecture- Directed graphs.

Chapter 9: Sections 9.1 to 9.6 and 10.1

Text Book:

J.A.Bondy and U.S.R. Murthy, *Graph Theory and Applications*, Macmillan, London, 1976.

Reference books:

- 1. Narsingh Deo, Graph Theory with applications to engineering and computerscience, Prentice Hall of India, New Delhi, 2001
- 2. G.Chartrand and L.Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, Fourth Edition, 2005
- 3. R.J. Wilson, *Introduction to Graph Theory*, Pearson Education, 4th Edition, 2004, Indian Print.
- 4. S. A. Choudum, A First Course in Graph Theory, MacMillan India Ltd. 1987.
- 5. J. Clark and D.A. Holton, *A First look at Graph Theory*, Allied Publishers, NewDelhi, 1995.
- 6. A. Gibbons, *Algorithmic Graph Theory*, Cambridge University Press, Cambridge, 1989.

E- Materials:

https://nptel.ac.in/courses/111106050/

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	S	S	S
CO2	S	S	M	M	S	S	S	S	S	S
CO3	S	S	M	M	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type:OpenElective Credit: 3

Paper code: Name of the Paper: BasicMathematics

Hours of Teaching: 90 hrs

CourseObjectives:

The main objective of this course are to:

- 1. Studyexponentialandlogarithmicseries.
- 2. Understandaboutmatricesanditsapplications.
- 3. Formulateandsolvethepartialdifferentialequations.
- 4. Discuss the properties of Laplace and inverse Laplace transformation.
- 5. Learnthe expansiontechniquesofFourierseries.

CourseOutcomes:

Aftersuccessfulcompletion of the course the student will be able to

- **CO1** Evaluate the exponential and logarithmic series.
- **CO2** Explainaboutmatrices and its applications.
- **CO3** Solvethepartial differential equations.
- **CO4** Solvethedifferential equations using Laplacetransform.
- **CO5** Analysethetechniques of Fourierseries.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	No	No	Yes	No
3	Yes	Yes	Yes	No	Yes	No
4	Yes	Yes	No	No	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 Exponential and Logarithmic series

18 hours

Exponentialseries-Logarithmicseries

Chapter 1:Section1.1–1.2

Unit – 2 Matrices 18 hours

Determinantofamatrix—Characteristicequationofamatrix—Characteristicvectorsofamatrix—Cayley-HamiltonTheorem—Inverseof amatrix.

Chapter4: Section 4.1-4.5

$Unit-3 \qquad Partial Differential Equations$

18 hours

Elimination of arbitrary constants – Elimination of arbitrary functions – Standard forms – Lagrange's Equations.

Chapter9: Section 9.1 - 9.4

Unit – 4 Laplacetransforms

18 hours

Properties of Laplace transform-Inverse Laplace transform-Partial Fractions.

Chapter10:Section 10.1 – 10.3

Unit – 5 FourierSeries

18 hours

Properties of Integration – Odd and Even Functions – Half Range Fourier Series.

Chapter11: Section11.1 – 11.3

Text Book:

G.BrittoAntonyXavier,V.Balaji,S.U.VasanthaKumar,B.Govindan,MathematicalSciences, JayalakshmiPublications, 2-e,2015.

ReferenceBooks:

- 1. P. Balasubramaniyam, K.G. Subramanian, Ancillary Mathematics, Volume–I, TataMcGrawHill publishing company limited, New Delhi, 1996.
- 2. P.DuraiPandian,S.UdayaBaskaran,AlliedMathematics,Volume–I,Muhilpublishers,1st Edition, Chennai, 1997.
- 3. P.KandsamyandK.Thilagavathy,AlliedMathematicsvolume–I,Volume–II,S.Chand&Company, New Delhi, 2004.
- 4. ShantiNarayan, P.K. Mittal, Differential Calculus, S. Chand & Co, New Delhi, 2005.
- 5. A.Singaravelu, Allied Mathematics, Meenakshi Agency, Chennai, 2001.
- 6. P.R. Vittal, Allied Mathematics, Margham Publications, Chennai, 1999.

E-Materials:

http://mathforum.org/library/drmath/sets/elem_2d

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	S	S	S	L	S
CO2	S	S	M	M	S	S	S	S	L	S
CO3	S	S	M	M	S	S	S	S	M	S
CO4	S	S	M	M	S	S	S	S	M	S
CO5	S	S	M	M	S	S	S	S	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Mathematical Foundations

Hours of Teaching: 90 hrs

CourseObjectives:

The main objective of this course are to

- 1. Study the logical operators, Propositional function, quantifiers, rules of inference.
- 2. Understand about fundamental mathematical concepts such as sets, relations, functions and composition of functions
- 3. Know the typesof binaryoperations and boolean algebra.
- 4. Formulateandsolvethe differentiation and applications of differentiation
- 5. Acquire the knowledge of two dimensional analytical geometry

CourseOutcomes:

Aftersuccessfulcompletionofthecoursethe student willbeableto

- **CO1** Applymathematicallogical operators.
- CO2 Improveknowledgeinset theory, functions with someproblems.
- CO3 Classify the typesof binaryoperations and know about the boolean algebra.
- **CO4** Solveproblemsonapplicationsofdifferentiation
- **CO5** Evaluate problems on Straight lines, circles and conics.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	No	No	Yes	Yes
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	No	No	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 SymbolicLogic

18 hours

Proposition, Logical operators, conjunction, disjunction, negation, conditional and Bi-conditional operators, converse, inverse, contrapositive, logically equivalent, tautology and contradiction, Arguments and validity of argument.

Chapter1:Sections 1.1–1.5

Unit - 2 Set Theory

18 hours

Set, Setoperations, Venndiagram, Properties of sets, number of elements in a set, Cartesian product, relation & functions, Relation: Equivalence relation. Equivalence class, Partially and Totally ordered sets, Functions: Types of Functions, Composition of Functions.

Chapter2:Sections 2.1–2.8

Unit – 3 Binary Operations

18 hours

TypesofBinaryoperations:Commutative,Associative,Distributiveandidentity,Booleanalgebra:properti es,Permutationsandcombinations.

Chapter3:Sections 3.1–3.3

Unit – 4 Differentiation

18 hours

Simple problem using standard limits, $\lim_{x \to a} \frac{x^n - a^n}{x - a}$, $\lim_{x \to 0} \frac{\sin x}{x}$, $\lim_{x \to 0} \frac{\tan x}{x}$, $\lim_{x \to 0} e^x$, $\lim_{n \to 0} \frac{(1 + 1/n)^n}{n}$, $\lim_{n \to 0} (1 + n)^{1/n}$, Differentiation,

successive differentiation, Leibnitz theorem, partial Differentiation, Applications of differentiation, Tangent and normal, angle between two curves, Maximum and minimum values [second derivative test], curvature and radius of curvature [Cartesian coordinates], Envelopes.

Chapter 4: Sections 4.1 - 4.9

Unit – 5 TwoDimensionalAnalyticalGeometry

18 hours

Straight lines – pair of straight lines – circles – System of Circles – Conics [parabola, Ellipseand Hyperbola].

Chapter 5: Sections 5.1 - 5.5

Text Book:

U.Rizwan, Mathematical Foundations Volume I, Nelliappar Publications, Chennai 2017.

ReferenceBooks:

- 1. P.R. Vittal, Mathematical Foundations, Margham Publication, Chennai.
- 2. V.Sundaram &others, Discrete Mathematical Foundations, A.P. Publication, Sirkali
- 3. P.Duraipandian&Others,AnalyticalGeometryof2and3Dimensions,EmeraldPublication 1992 Reprint.

E-Materials:

http://www.mathfoundation.com

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	L	S	S	M	S
CO2	S	S	M	M	S	M	S	M	M	S
CO3	S	S	M	M	S	S	S	S	M	S
CO4	S	S	S	L	S	S	S	S	M	S
CO5	S	S	S	S	M	S	S	S	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*}S-Strong, M-Medium, L-Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: I Paper type: OpenElective Credit: 3

Paper code: Name of the Paper: Mathematical Modeling

Hours of Teaching:90 hrs

Course objective:

The main objective of this course are to

- 1. Provide an introduction to modeling and simulation.
- 2. Solve and interpret real life problems using different Mathematical perspectives.
- 3. Apply the Mathematical Modeling through difference equations.
- 4. Develop the Mathematical modeling through Graphs.
- 5. To have a proper understanding of calculus of variations and Dynamics Programming.

Course Learning outcomes:

After the successful completion of this course, the students will be able to:

- **CO1** Understand concept of modeling and simulation.
- **CO2** Crete mathematical models of real world problems.
- **CO3** Explain the population dynamics and genetics.
- **CO4** Mathematical models using mathematical techniques.
- **CO5** Discuss the calculus Variations and Dynamic Programming.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	No	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

18 hours

differential Equations of the First Order

Mathematicalmodellinginpopulationdynamics, Mathematicalmodelling of epidemics through systems of ordinary differential equations of first order — Mathematical Models in Medicine, Arms Race, Battles and international Trade in terms of Systemsof ordinary differential equations — Mathematical modelling in dynamics through systems of ordinary differential equations of first order.

Chapter 3:Sections 3.1, 3.2,3.5 and 3.6

Unit – 2 Mathematical Modellingthroughdifferenceequations

18 hours

The need for Mathematical modelling through difference equations - some simple models - Basictheoryoflineardifference equations with constant coefficients-Mathematical modelling through difference equations in economics and finance.

Chapter5:Sections 5.1to 5.3

Unit – 3 Mathematical Modellingthroughdifferenceequations(contd.) 18 hours

Mathematical modelling through difference equations in population dynamics and genetics. Mathematical Modelling through difference equations in probability theory. Miscellaneous examples of Mathematical modelling through difference equations.

Chapter 5:Sections 5.4 to 5.6

$Unit-4 \qquad Mathematical\ modelling through Graphs$

18 hours

Situations that can be modeled through graphs - Mathematical models in terms of directedgraphs - Mathematical models in terms of signed graphs - Mathematical models in terms ofweightedgraphs.

Chapter7:Sections 7.1 to 7.4

Unit-5 Mathematical Modellingthrough calculus of Variations and

18 hours

DynamicProgramming

Optimizationprinciples and techniques - Mathematical modelling through calculus of variations - Mathematical Modelling through dynamic programming.

Chapter9:Sections 9.1to9.3

Text Book:

J.N.Kapur, Mathematical Modelling, Willey Eastern Limited, Reprint, 2000.

ReferenceBooks:

- 1. D.J.G.JamesandJ.J.Macdonald,CasestudiesinMathematicalModelling,StanlyThames,C heltonham.
- 2. M.CrossandA.O.Moscrcadini,TheartofMathematicalModelling,EllisHarwoodandJohn Wiley.
- 3. C.Dyson, Elvery, Principles of Mathematical Modelling, Academic Press, New York.
- 4. D.N.Burghes, Modelling with Difference Equations, Ellis Harwood and John Wiley.

E-Materials:

http://www.mathfoundation.com

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	S	M	S	L	S	L
CO2	M	S	M	S	M	L	M	L	L	S
CO3	S	L	S	M	S	L	M	S	L	M
CO4	M	S	M	S	S	M	L	S	M	S
CO5	S	L	M	S	M	M	L	M	L	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Core Credit: 5

Paper code: Name of the Paper: Algebra-II

Hours of Teaching:90 hrs

Course Objective:

The main objective of this course are to:

- 1. Attain depth knowledge about extension field and its types.
- 2. Study the concepts of existence of extension fields of polynomials over polynomial rings.
- 3. Understand Galois theory and develop Galois groups.
- 4. Know more about the finite fields and solvable groups.
- 5. Learn the important theorems related to division rings and its application.

Course Learning Outcomes:

After successful completion on the course the student will be able to:

- CO1 Understand fundamental concepts including extension fields, Algebraic extensions and Algebraic numbers.
- **CO2** Determine existence and properties of extension fields of polynomials
- CO3 Demonstrate capacity of illustration for mathematical reasoning through analyzing, proving and explaining concepts from filed extensions and Galois theory
- **CO4** Apply knowledge of solvability of radicals over polynomials on finite fields
- **CO5** Analyze the theorems related to division rings to apply them on relevant fields

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	No	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit - 1 Field Theory

18 hours

Extension fields - Transcendence of 'e'.

Chapter 5: Section 5.1 and 5.2

Unit – 2 Polynomials and Roots

18 hours

Roots of Polynomials- More about roots.

Chapter 5: Sections 5.3 and 5.5

Unit - 3 Galois theory

18 hours

Elements of Galois theory.

Chapter 5: Section 5.6

Unit – 4 Finite Fields

18 hours

Solvability by Radicals - Finite fields - Wedderburn's theorem on finite division rings.

Chapter 5: Section 5.7

Chapter 7: Sections 7.1 and 7.2 (Only Theorem 7.2.1)

Unit – 5 Solvability by Radicals

18 hours

A theorem of Frobenius - Integral Quaternions and the Four -Square theorem.

Chapter 7: Sections 7.3 and 7.4

Text Book:

I.N. Herstein, Topics in Algebra, 2nd Edition. Wiley.1975

Reference Books:

- 1. D.S.Dummit and R.M.Foote. Abstract Algebra. Wiley 2003.
- 2. M. Artin, Algebra, Prentice Hall of India, 1991.
- 3. J.A. Gallian. Contemporary Abstract Algebra. 4th Edition. Narosa Publishing 2011.
- 4. P.B.Battacharya, S.K.Jain and S.R.Nagpaul, Basic Abstract Algebra(II Edition)

 Cambridge University Press, 1997.(Indian Edition)
- 5. I.S. Luther and I.B.S.Passi, Algebra, Vol.I Groups(1996), Vol. II Rings, Narosa Publishing House, New Delhi, 1999.
- Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, Second Indian Reprint 2006, Springer Verlag, Newyork.
- 7. L. Smith(1998). Linear transformation: Example and Applications. In: Linear Undergraduate texts in Mathematics, Springer, Newyork.

E-Materials:

- 1. https://www.jmilne.org->FTe6
- 2. http://www.math.iitb.ac.in/~srg/Lecnotes/galois_des.html
- 3. math">https://www.jmilne.org>math
- 4. https://nptel.ac.in/courses/111108098/ (Video Lecture)

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	M	S	S	S	S
CO2	S	S	M	M	M	S	S	S	S	S
CO3	S	S	M	M	M	M	S	S	S	S
CO4	S	S	M	M	M	S	S	S	S	S
CO5	S	S	M	M	M	M	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics -2022 - 2023 onwards

Semester: II Paper type: Core Credit: 5

Paper code: Name of the Paper: Real Analysis-II

Hours of Teaching:90 hrs

CourseObjectives:

Theobjectives of the courseis to

- 1. know the Lebesgue Integral
- 2. understand the concept of Riesz-Fischer theorem
- 3. studyFourierSeriesand Integralsindepth
- 4. understandtheconcepts of multivariable calculus.
- 5. acquire knowledgeabout implicit functions and the extremum values of functions.

Course Outcomes:

After successful completion on the course the student will be able to

- CO1 know about the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.
- **CO2** develop the properties of inner products, norms and measurable functions.
- **CO3** understand the concept of FourierSeries and Integrals.
- **CO4** acquire the knowledge of multivariable calculus.
- **CO5** enrich the students to work effectively on implicit functions and the extremum values of functions.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	No	Yes	No

Unit – 1 Lebesgue Integral

18 hours

Introduction- The integral of a step function – Monotonic sequences of step functions – Upper functions and their integrals – Riemann-Integrable functions as examples of upper functions – The class of Lebesgue – Integrable functions on a general interval – Basic properties of the Lebesgue integral – Lebesgue integration and sets of measure zero – The Levi monotone convergence theorems-Lebesgue Dominated Convergence Theorem.

Chapter 10: Sections 10.1 to 10.10

Unit – 2 Lebesgue Integral Contd.

18 hours

Lebesgue integrals on unbounded intervals as limits of integrals on bounded intervals –Improper Riemann integrals – Measurable functions – Continuity of functions defined byLebesgue integrals – Differentiation under the integral sign – Inner products and norms – The set L^2 (I) of square–integrable functions – The set L^2 (I) as a semi-metric space – A convergence theorem for series of functions in L^2 (I) – The Riesz-Fischer theorem.

Chapter 10: Sections 10.12 to 10.16, 10.21 to 10.25

Unit – 3 FourierSeries andFourierIntegrals

18 hours

Introduction-Orthogonal system of functions-The theorem on best approximation-Theorem on the contraction of the contraction o

The Fourier series of function relative to an orthonormal system—Properties of Fourier Coefficients—

TheRiesz-FischerTheorem-Theconvergenceandrepresentationproblemsfortrigonometricseries-

TheReimann-LebesgueLemma-TheDirichletIntegrals-

AnIntegralrepresentationforthepartialsumsofFourierseries-Reimann'slocalizationtheorem-

Sufficient conditions for convergence of a Fourier Series at a particular point—

CesarosummabilityofFourierseries-ConsequencesofFejes'stheorem-

The Weiestrass approximation theorem.

Chapter11:Sections11.1 to 11.15

Unit – 4 MultivariableDifferentialCalculus

18 hours

Introduction-The Directional derivative-Directional derivative and continuity-The total derivative-Directional derivative and continuity-The total derivative-Directional derivative-Direction and the derivative-Directi

The total derivative expressed in terms of partial derivatives - An Applications to Complex-

ValuedFunctions-Thematrixoflinearfunction-TheJacobianmatrix-Thechainrule-

Matrixformofchainrule-Themean-valuetheoremfordifferentiablefunctions-

Asufficientconditionfordifferentiability—Asufficientconditionforequalityofmixed partial derivatives—Taylor's theorem for functions of R^n to R^1 .

Chapter12:Sections 12.1 to12.14

Unit-5 ImplicitFunctionsandExtremumProblems

18 hours

Introduction-Functions with non-zero Jacobian determinants-The inverse function theorem-The Implicit function Theorem-Extrema of real valued functions of one variable and several variables-Extremum problems with side conditions.

Chapter13:Sections13.1 to 13.7

Text Book:

TomM.Apostol,MathematicalAnalysis(SecondEdition)(1981),Addison—WesleyPublishingCompanyInc.New York.

ReferenceBooks:

- 1. J.C.Burkill, TheLebesgue Integral(1951), Cambridge UniversityPress.
- 2. M.E.Munroe, Measure And Integration (1971), Addison-Wiley.
- 3. H.L.Roydon, Real Analysis (1988), Macmillan Pub. Company, New York.
- 4. W.Rudin, Principles of Mathematical Analysis (1979), McGraw Hill Company, New York.
- 5. S.C.MalikandSavitaArora,MathematicalAnalysis(1991),WileyEasternLimited,NewDel hi.
- 6. SanjayArora andBansiLal,SatyaPrakashan,IntroductionTo RealAnalysis,(1991),NewDelhi.

E-Materials:

https://onlinecourses.nptel.ac.in/noc21_ma63/preview

https://mathworld.wolfram.com/

https://ocw.mit.edu/courses/mathematics/18-100b-analysis-i-fall-2010/

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	S	M
CO2	S	S	M	M	S	M	S	S	S	M
CO3	S	S	M	M	S	M	S	S	S	M
CO4	S	S	M	M	S	M	S	S	S	M
CO5	S	S	M	M	S	M	S	S	S	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Core Credit: 4

Paper code: Name of the Paper: Partial Differential Equations

Hours of Teaching:90 hrs

Course Objectives:

The main objective of this course are to:

- 1. Understand the theory and methods of Partial Differential Equations (PDEs).
- 2. Apply and solve PDEs applications from various emerging technologies.
- 3. Provide solution for First and second order partial differential equations.
- 4. Introduce the concepts and solving methods of Elliptical, paraboloid, hyperbolic differential equations.
- 5. Examine the existence and uniqueness of solutions of differential equations.

Course Outcomes:

After successful completion of the course the student will be able to

- **CO1** Analyze the methods for first order partial differential equations.
- CO2 Understand the fundamentals of second order partial differential equations.
- **CO3** Define the methods to solve elliptical differential equations.
- **CO4** Discuss the formation and solutions of paraboloid differential equations.
- CO5 Construct the solutions for hyperbolic differential equations and identifythe research problem where PDE can be used to model the problem.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit – 1 Partial Differential Equations of First Order

18 hours

Formation and solutions of first order PDE – Integral surfaces – The Cauchy problem for first order equation –Orthogonal surfaces – First order non-linear equations – characteristics–compatible systems of first order equations - Charpit's method.

Chapter 0:Sections 0.4 to 0.11. (omit 0.11.1))

Unit – 2 Fundamentals of Second Order PDE

18 hours

Introduction – classification of second order PDE – canonical forms – Adjoint operators.

Chapter 1:Sections 1.1 to 1.4

Unit – 3 Elliptic Differential Equations

18 hours

Derivation of Laplace and Poisson equations – Boundary value problem – Separation of variables – Dirichlet's and Newmann problems for a rectangle – Solution of Laplace equation in Cylindrical and spherical coordinates.

Chapter 2: Sections 2.1, 2.2, 2.5 to 2.7,2.11 to 2.12

Unit – 4 Parabolic Differential Equations

18 hours

Formation and elementary solution of diffusion equation with boundary conditions – Dirac-Delta function – Separation of variable method - Solution of diffusion equation in cylindrical and spherical coordinates.

Chapter 3: Sections 3.1 to 3.7

Unit – 5 Hyperbolic Differential Equations

18 hours

Derivation and solution of 1-D wave equation by canonical reduction – Initial Value Problem; D'Alembert's solution – IVP and BVP for 2-D wave equation – Periodic solution for 1-D wave equation in cylindrical and spherical coordinates systems –Uniqueness of the solution for 1-D wave equation – Duhamel's principle.

Chapter 4: Sections 4.1 to 4.4, 4.7 to 4.9, 4.11 and 4.12

Text Book:

K.Sankara Rao, Introduction to Partial differential equations (Third edition), Prentice-Hall of India Ltd., New Delhi, 2016.

Reference Books:

- I.N. Sneddon, Elements of partial differential equations, McGraw Hill book company, Singapore, 1957
- 2. R. Dennemeyer, Introduction to partial differential equations and boundary value problems, McGraw Hill, New York, 1968.
- 3. R.C. McOwen, Partial differential equations, 2nd edition, Pearson education, New Delhi, 2005.
- 4. M.D.Raisinghania, Advanced differential equations, S.Chand& Company Ltd. New Delhi, 2001.
- 5. N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.

E-Materials:

- 1. https://nptel.ac.in/courses/111103021/
- 2. onlinecourses.nptel.ac.in > noc21 ma18
- 3. onlinecourses.nptel.ac.in > noc22 ma28
- **4.** onlinecourses.nptel.ac.in > noc21_ma33

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	M	S	M	M
CO2	S	S	M	M	M	S	M	S	M	S
CO3	S	S	S	M	M	S	S	M	M	S
CO4	S	S	S	M	M	M	S	M	M	S
CO5	S	S	S	M	M	M	S	M	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Mathematical Statistics

Hours of Teaching: 75 hrs

Course Objectives:

The main objective of this course are to:

- 1 Introduce the basic notions of sample, population, sample moments and their functions.
- 2 Give an insight about the parametric and non-parametric tests for small and large samples.
- 3 Educate the various measures of estimation theory
- 4 Inculcate the concepts of ANOVA and testing of hypothesis.
- 5 Indoctrinate the strong background about the sequential analysis and its consequences.

Course Outcomes:

After successful completion on the course the student will be able to

- **CO1** Know the basic notions of sample, population, sample moments and their functions.
- CO2 Comprehend the parametric and non-parametric tests for small and large samples.
- CO3 Understand the various measures of estimation theory.
- Acquire the knowledge in the concept of ANOVA and, apply them in real life situations for testing of hypothesis.
- CO5 Procure the strong background about the sequential analysis and its consequences

Unit	Remembering	Understanding	Applying	Understanding Applying Analyzing		Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	No	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 Sample Moments and Their Functions

15 hours

Notion of a Sample and a Statistic – Distribution of the Arithmetic Mean of IndependentNormally Distributed Random Variables – The Chi-Square Distribution – The Distribution of the Statistics – Student's t-Distribution – Fisher's Z-Distribution – Snedecor's F Distribution – Distribution of Sample Mean from Non-Normal Populations.

Chapter 9: Sections: 9.1–9.8

Unit – 2 Significance Tests

15 hours

Kolmogorov Theorem – Smirnov Theorem – The Concept of a Statistical Test – Parametric Tests for Small Samples and Large Samples – Chi-Square Test – Tests of Kolmogorov and Smirnov Type – The Wald-Wolfovitz and Wilcoxon-Mann-Whitney Tests – Independence Tests by Contingency Tables.

Chapter 10:Sections: 10.11

Chapter 12: Sections:12.1–12.7

Unit – 3 Estimation Theory

15 hours

Preliminary Notion – Consistent Estimaties – Unbiased Estimates – Sufficiency of an Estimate – Efficiency of an Estimate – Asymptotically Most Efficient Estimates – Methodsof Finding Estimates – Confidence Interval.

Chapter 13: Sections: 13.1–13.8

Unit – 4 Analysis of Variance and Hypotheses Testing

15 hours

ANOVA Test: One-Way Classification and Two-Way Classification. Hypotheses Testing:The Power Functions and OC Function – Most Powerful Test – Uniformly Most PowerfulTest – Unbiased Test.

Chapter 15: Sections 15.1–15.2

Chapter 16:Sections 16.1–16.5

Unit – 5 Elements of Sequential Analysis

15 hours

SPRT – Auxiliary Theorem – Wald's Fundamental Identity – OC Function and SPRT – The Expected Value of (n) – Determination of A and B – Testing a Hypothesis Concerning pof Zero-One Distribution – Testing a Hypothesis Concerning the Expected Value m of a Normal Population.

Chapter 17: Sections: 17.1–17.9

Text Book:

M. Fisz, Probability Theory and Mathematical Statistics, 3rd Edition, John Wileyand Sons Inc., New York, 1963.

Reference Books:

- 1. V.K. Rohatgi and A.K.Md.E. Saleh, An Introduction to Probability Theory and Mathematical Statistics, 2nd Edition, Wiley Eastern Ltd., New Delhi, 1988.
- 2. E.J. Dudewicz and S.N. Mishra, Modern Mathematical Statistics, John Wiley and Sons, New York, 1988.
- 3. G.G. Roussas, A First Course in Mathematical Statistics, 2nd Edition, AcademicPress, USA, 1997.
- 4. B.L.V.D. Waerden, Mathematical Statistics, Springer-Verlag, New York, 1969.
- 5. R.E. Walpole, R.H. Myers, S.L. Mayers and K. Ye, Probability and Statistics for Engineers and Scientists, 9th Edition, Pearson Education Inc., 2012.

E-Materials:

- 1. https://ocw.mit.edu/courses/18-655-mathematical-statistics-spring-2016/
- 2. https://dspace.mit.edu/bitstream/handle/1721.1/96865/18-175-fall-2008/contents/lecture-notes/index.htm
- 3. https://swayam.gov.in/nd1_noc20_ma19/preview
- 4. http://mathworld.wolfram.com

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	M	S	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Fuzzy Set Theory

Hours of Teaching: 75hrs

Course Objectives:

The main objective of this course are to

- 1. Introduce Fuzzy sets.
- 2. Define some operations on Fuzzy sets.
- 3. Understand the properties of Fuzzy sets.
- 4. Discuss about the operations on Fuzzy sets.
- 5. Calculate the arithmetic operations on Fuzzy numbers.

Course Outcomes:

After successful completion on the course the student will be able to

- CO1 Understand the basic concepts of Fuzzy Sets.
- **CO2** Discuss the Fuzzy sets versus crisp sets.
- **CO3** Analyze the operations on Fuzzy sets and Fuzzy complements.
- **CO4** Acquire the knowledge of various combination of operations.
- **CO5** Apply the concepts of Fuzzy mathematics in real life situation.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	No	Yes	Yes

Unit – 1 From Classical (Crisp) Sets to Fuzzy Sets

15 hours

Introduction – Crisp sets: An overview – Fuzzy sets – Basic types – Basic concepts –

Characteristics – Significance of the paradigm shift.

Chapter 1: Sections 1.1 to 1.5

Unit – 2 Fuzzy Sets Versus Crisp Sets

15 hours

Additional properties of α - Cuts – Representation of Fuzzy sets – Extension principle for Fuzzy sets.

Chapter 2: Sections 2.1 to 2.3

Unit – 3 Operations on Fuzzy Sets

15 hours

Types of Operation – Fuzzy complements – Fuzzy intersection – t-norms

Chapter 3: Sections 3.1 to 3.3

Unit – 4 Operations on Fuzzy Sets

15 hours

Fuzzy unions – t conorms – Combinations of operations – Aggregation operations.

Chapter 3: Sections 3.4 to 3.6

Unit − 5 Fuzzy Arithmetic

15 hours

Fuzzy numbers – Linguistic Variables – Arithmetic operation on intervals – Arithmetic operation on Fuzzy numbers.

Chapter 4: Sections 4.1 to 4.4

Text book:

G. J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, PHI, New Delhi, 2005.

Reference Books:

- 1. H. J. Zimmerman, Fuzzy Set Theory and its Applications, Allied Publishers, 1996.
- 2. A. Kaufman, Introduction to the theory of Fuzzy Subsets, Academic Press, 1975.
- 3. V. Novak, Fuzzy Sets and their Applications, Adam Hilger, Bristol, 1969.

E-Materials:

 $\underline{http://nptel.ac.in/courses/105108081/module9/lecture36/lecture.pdf}$

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	L	S	S	L	L
CO2	S	S	M	M	S	L	S	S	L	L
CO3	S	S	M	M	S	L	S	S	L	L
CO4	S	S	M	M	S	L	S	S	L	M
CO5	S	S	S	S	S	L	S	S	M	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Difference Equations

Hours of Teaching:75hrs

Course Objectives:

The main objectives of the course are to

- 1. To provide basic knowledge about the discretization process, the discrete version of difference equations.
- 2. Understand the Linear periodic systems.
- 3. Develop the students ability to difference equations using Z-transforms.
- 4. To enable to use of OscillationTheory.
- 5. Study oscillation and asymptotic behavior of solutions of certain classes of difference equations.

CourseLearningOutcomes:

Afterthesuccessfulcompletionofthiscourse, the students will be able to:

- **CO1** Solveproblemson Linear DifferenceEquationsofHigherorder.
- **CO2** Understand the system of Linear Difference Equations.
- **CO3** Apply Z-transformtechniques indifference equations.
- **CO4** Explain on Oscillation Theory.
- CO5 Discuss on Asymptotic Behavior of Difference Equation.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit – 1 LinearDifferenceEquationsof Higherorder

15 hours

DifferenceCalculus-GeneralTheoryofLinearDifferenceEquations-LinearHomogeneous Equations with Constant coefficients – Non-homogeneous equations: Methodof Undetermined Coefficients, the method of variation of constants - Limiting behavior ofSolutions.

Chapter2: Sections 2.1 to 2.5

Unit – 2 System of Linear Difference Equations

15 hours

Autonomous Systems - The Basic Theory - The Jordan form - Linear periodic systems.

Chapter3: Sections3.1to 3.4

Unit – 3 The Z-transform Method

15 hours

Definitions and Examples, Properties of Z-transform-The Inverse Z-transform and Solutions of Difference Equations: Power series method, partial fraction method, the inverse integral method - Volterra Difference Equation of convolution type - Volterra Systems.

Chapter6: Sections 6.1 to 6.3, 6.5

Unit-4 Oscillation Theory

15 hours

Three-termdifferenceEquations—Self-AdjointSecondOrderEquations-NonlinearDifference Equations.

Chapter7: Sections 7.1 to 7.3

Unit – 5 AsymptoticBehaviourof DifferenceEquation

15 hours

Tools of Approximation - Poincare's Theorem - Asymptotically Diagonal Systems - High-Order Difference Equations - Second Order Difference Equations.

Chapter 8: Sections 8.1 to 8.5

Text Book:

SaberN.Elaydi, *AnIntroductiontoDifferenceEquations*, ThirdEdition, SpringerVerlag, New York, 2005 (FirstIndian Reprint 2008).

ReferenceBooks:

- 1. RonaldE.Mickens, *DifferenceEquationsTheory*, *ApplicationsandAdvancedTopics*, Third Edition, CRC Press, NewYork, 2015.
- 2. R.P.Agarwal., Difference Equations and Inequalities, Marcel Dekker, 1999.
- 3. S.Goldberg, Introduction to Difference Equations, Dover Publications, 1986

- 4. V.LakshmikanthamandTrigiante, *TheoryofDifferenceEquationsNumericalMethodsand Applications*, Second Edition, AcademicPress, New York, 1988.
- 5. WalterG.Kelly, Allan C.Peterson, *Difference Equations*, An Introduction with Applications, Academic Press, New York, 2001 (First Indian Reprint 2006).

E-Materials:

- 1. http://people.math.aau.dk/~matarne/11-imat/notes2011a.pdf,
- **2.** http://pj.freefaculty.org/guides/stat/Math/DifferenceEquations/DifferenceEquations-guide.pdf

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	L	M	S	L	S	L
CO2	M	S	M	S	S	M	M	S	L	M
CO3	S	S	L	S	L	S	S	M	L	L
CO4	M	L	M	L	S	M	M	S	M	S
CO5	S	M	S	S	M	L	M	L	L	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Fundamentals of Insurance

Hours of Teaching:75hrs

Course Objectives:

The main objective of this course are to:

- 1 Introduce the concept of insurance.
- 2 Study about the Life Insurance and claims.
- 3 Understand the concepts of Fire and Marine insurance.
- 4 Know about motor and other insurances.
- 5 Get the knowledge of getting job in insurance companies.

Course Outcomes

After successful completion on the course the student will be able to

- **CO1** understand the principles and regulations of Insurance
- **CO2** analyse the benefits of life insurance policies
- CO3 discuss the fire and marine insurance and its benefits
- **CO4** analyse the various insurance sectors
- CO5 Understand the duties of an insurance agent and procedure to get license.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	No	No
2	Yes	Yes	Yes	No	No	No
3	Yes	Yes	Yes	Yes	No	No
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	Yes	No	No

Unit – 1 Introduction to Insurance

15 hours

Meaning, Definition of insurance- General principles of insurance - Types of insurance life, fire and marine-Difference between life and other types of insurance, Growth & Development of Indian insurance industry- Regulations of insurance business and the emerging scenario.

Unit – 2 Life Insurance

15 hours

Introduction to life insurance: Features of life insurance-Essentials of life insurance, Different types of life policies- Annuities, Formation of life insurance contracts-Assignment and nominations- Lapses and revivals of policies. Surrender value, paid up value, Loans-Claims-Procedure for claims- Settlement of claims- Death and Maturity.

Unit – 3 Fire and Marine Insurance

15 hours

Fire Insurance- Fire insurance contracts- Fire insurance coverage- Policies for stocks- Rate fixation in fire insurance- Settlement of claims. Marine Insurance- Functions- Marine perils-Types of marine policiesClauses in general use-Warranties and conditions- proximate cause-subrogation and conciliation - Reinsurance- Double insurance-Types of marine losses.

Unit – 4 Miscellaneous Insurance

15 hours

Motor insurance - Employer's liability insurance- Personal accident and sickness insurance - Aviation insurance- Burglary insurance- Fidelity guarantee insurance- Engineering insurancecattle insurance- Crop insurance.

Unit – 5 Role of Insurance Agent

15 hours

Procedure for becoming an Agent- Pre-requisite for obtaining a license- Duration of license-Cancellation of license- Termination of agency - Code of Conduct- Functions of the Agent.

Text book:

- 1. Fundamentals of Insurance Dr. Periyasamy, Himalaya Publishing Pvt Ltd, Mumbai.
- 2. Insurance principles and practice Moorthy. A, Margham publications, Chennai.
- 3. Fundamentals of insurance Dr. P. K. Guptha, Margham publications, Chennai

Reference Books:

- 1 Insurance principles and practice- Periasamy. P, Margham publications, Chennai
- 2 Insurance principles and practice Mishra. M. N, Sultan Chand & Sons, NewDelhi
- 3 Insurance principles and practice- Balu. V. & Premilan, Margham publications, Chennai

E-Materials:

- https://ocw.mit.edu/courses/economics/14-73-the-challenge-of-world-poverty-spring-2011/video-lectures/lecture-15-risk-and-insurance/
- https://ocw.mit.edu/courses/economics/14-73-the-challenge-of-world-poverty-spring-2011/video-lectures/lecture-16-insurance/

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	L	M	S	S	S	S	L	M
CO2	M	M	M	M	S	S	S	S	L	M
CO3	M	L	L	S	S	S	S	S	L	M
CO4	M	M	L	M	S	S	S	S	L	M
CO5	S	M	M	S	S	S	S	S	L	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: NumericalMethods

Hours of Teaching: 75hrs

CourseObjectives:

Theobjectives of the course is to

- 1. Understandtheconceptof solving algebraic and transcendental equations.
- 2. Studythevarious methodsto obtaininterpolation withequaland unequalintervals.
- 3. Get knowledge about numerical differentiation.
- 4. Demonstrate the numerical integration.
- 5. Solvethe ordinary differential equations using various numerical methods.

Course Outcomes:

After successful completion on the course the student will be able to

- **CO1** Solve algebraic and transcendental equations.
- **CO2** Acquire the knowledge of interpolation for equal and unequal intervals.
- **CO3** Enrich the students to work effectively on numerical differentiation.
- **CO4** Provides a foundation in the study of numerical integration.
- **CO5** Knows to solve ordinary differential equations using various numericalmethods.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1 Solutionofnumericalalgebraicandtranscendental Equations

15 hours

Bisection method – Iteration Method – Newton-Raphson methodSolutionof simultaneouslinear algebraic equations: Gausselimination method—Gauss-Jordan elimination method—

GaussJacobimethod–GaussSeidel method – Simple Problems.

Chapter3: Sections 3.1,3.1.1, 3.2, 3.4

Chapter4: Sections 4.1, 4.2, 4.2.1, 4.8, 4.9.

Unit - 2 Interpolation

15 hours

Introduction – Newton's forward and backward formulae – Central differences – Gaussforward and backward formulae – Stirling's formula – Divided differences – Properties – Relationsbetweendivideddifferencesandforwarddifferences-Newton's divided differences formula – Lagrange's formula.

Chapter6: Sections 6.1,6.2, 6.3

Chapter7: Sections 7.1,7.3, 7.4, 7.5

Chapter8: Sections 8.2, 8.3,8.4, 8.5, 8.7

Unit – 3 Numerical Differentiation

15 hours

Newton's forward and backward formulaeto compute the derivatives—Derivative using Stirling's formulae – to find maxima and minima of the function given the tabular values. **Chapter9:** Sections 9.2,9.3, 9.4, 9.6

Unit – 4 NumericalIntegration

15 hours

Newton – Cote's formula – Trapezoidal rule – Simpson's 1/3rd and 3/8th rules – Weddle rule. **Chapter9:** Sections 9.8, 9.9, 9.13, 9.14, 9.15

Unit – 5 Numerical solution of ordinary differential equations

15 hours

Euler'smethod-ImprovedEuler'smethod-Modified Euler'smethod-Runge-Kutta method (Fourth orderonly).

Chapter11: Sections 11.9, 11.10, 11.11, 11.12, 11.13.

Text Book:

Kandasamy. P, Thilagavathi. K and Gunavathi. K "Numerical methods" – S. ChandandCompanyLtd, NewDelhi–ThirdRevised Edition 2016.

ReferenceBooks:

- 1. Venkataraman M. K.,"Numerical Methods in Science and Engineering" NationalPublishingcompanyV Edition 1999.
- 2. Sankara Rao K., "Numerical Methods for Scientists and Engineers" 2nd EditionPrenticeHallIndia 2004.
- 3. GuptaB.D., Numerical Analysis, Konark Publishers Pvt. Ltd.

E-Materials:

- 1. http://nptel.ac.in/courses/122102009/
- 2. http://www.math.ust.hk/~machas/numerical-methods.pdf
- 3. https://mathworld.wolfram.com/

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	S	S
CO2	S	S	M	M	S	M	S	S	S	S
CO3	S	S	M	M	S	M	S	S	S	S
CO4	S	S	M	M	S	M	S	S	S	S
CO5	S	S	M	M	S	M	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: II Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Fundamentalsof BusinessStatistics

Hours of Teaching: 75hrs

CourseObjectives:

The main objective of this course are to:

- 1 Provide basic knowledge of the origin and evolution of Statistics
- 2 Applystatistical techniques for interpreting and drawing conclusion for business problems.
- 3 Develop the students ability to deal with numerical and quantitative issues in business
- 4 Enable the use of statistical, graphical and algebraic techniques where ever relevant
- 5 Have a proper understanding of Statistical applications in Economics and Management.

CourseOutcomes

Aftersuccessfulcompletion of the course the student will be able to

- CO1 ClassifyaboutthePartialandMultiple Correlation
- CO2 Explainthebasicconcepts of Probability and Theoretical Distributions
- CO3 Identifythe educatedguess(hypothesis)
- CO4 Analyzethestatisticalinferences-TestofHypothesis,Chisquareand goodness of

Fit and F-Test

CO5 Discuss and designtheAnalysisofVariance

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	No	No	Yes	No
3	Yes	Yes	Yes	No	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	No	Yes	Yes	Yes

Unit – 1 Partial and Multiple Correlation

15 hours

Introduction-PartialCorrelation-MultipleCorrelation-MultipleRegressionAnalysis-

ReliabilityofEstimates-MiscellaneousIllustrations

Volume–II:Chapter9:Pages:1109to1135

Unit – 2 Theoryof ProbabilityandTheoreticalDistributions

15 hours

Introduction-Probability Defined-Importance of the Concept of Probability-

Calculation of Probability-Theorems of Probability-Conditional Probability-Bayes' theorem-

ProbabilityDistribution-BinomialDistribution-PoissonDistribution.

Volume-II: Chapter 1: Pages: 751 to 770 and 774 to 788;

Chapter2:Pages:806to823,826to833and 858 to 879

Unit – 3 StatisticalInference-TestofHypothesis

15 hours

Introduction-SamplingErrorandSamplingDistribution-Estimation-

Test of Significance for Large Samples-Test of Significance for Small Samples-Test of Significance for Significance for Small Samples-Test of Small Samples-Tes

MiscellaneousIllustrations.

Volume–II: Chapter 3:Pages: 882 to 951)

Unit - 4 ChisquareandGoodnessofFit

15 hours

Introduction-Chisquaredefined-ConditionsofAdditiveChi-SquareTest-Yate'sCorrections-

UsesofChi-SquareTest-AdditivePropertyofChi-Square-Chi-

Square Test for Specified Value of Population Variance-Miscellane ous Illustrations.

Volume–II:Chapter 4: Pages: 953to 1003

Unit – 5 F-Testand AnalysisofVariance

15 hours

The F Testorthe Variance Ratio Test-Application F Test-Analysis of Variance -

AssumptionsInAnalysisofVariance-TechniqueofAnalysisofVariance-Codingdata-

Analysis of Variance in Two-Way Classification Model.

Volume-II:Chapter5:Pages:1006 to 1038

Text Book:

S.P.Gupta, Statistical Methods, Sultan Chand & Sons, New Delhi, 2009.

ReferenceBooks:

- 1. S.C.GuptaandV.K.Kapoor,FundamentalsofMathematicalStatistics,11-e,SultanChand&Sons, NewDelhi, 2004.
- 2. S.P.Gupta&M.P.Gupta,BusinessStatistics,14thenlargededition,SultanChand&Sons, Educational publishers, New Delhi, reprint 2007.
- 3. RichardILevinandDavidS.Rubit,StatisticsforManagement,Seventhedition,PearsonEduc ation, NewDelhi, 2002.
- 4. P.R.Vittal,BusinessMathematicsandStatistics,MarghamPublications,Sixthrevisededitio n, 2011.

E-Materials:

http://mathworld.wolfram.com

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	L	S	S	S	M	S
CO2	S	S	M	M	S	S	S	S	M	S
CO3	S	S	M	S	S	S	S	S	M	S
CO4	S	S	S	M	M	S	S	S	M	S
CO5	S	S	M	M	S	S	S	S	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022-2023 Onwards

Semester: III Paper Type: Core Credit: 6

Paper Code: Name of the Paper: Complex Analysis – I

Hours of Teaching: 90 Hours

Course Objectives

The objectives of this course are to

- 1 Introduce the notions of differentiability, analyticity and power series.
- 2 Discuss the complex integration, Cauchy theorem and its properties.
- 3 Educate the conformal mappings and Mobius transformations.
- 4 Inculcate the concepts of maximum principle, Schwarz's lemma and Liouville's theorem.
- 5 Indoctrinate the singularities and its classification.

Course Outcomes

After the successful completion of this course, the students will be able to

- **CO1** Understand the notions of differentiability, analyticity, power series and its consequences.
- **CO2** Comprehend the complex integration, Cauchy theorem and its properties.
- **CO3** Know the conformal mappings and Mobius transformations.
- **CO4** Acquire the concepts of maximum principle, Schwarz's lemma and Liouville's theorem.
- **CO5** Procure the singularities and its classification.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	No	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	No	No
4	Yes	Yes	Yes	No	No	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1: Analytic Functions and Power Series

18 Hours

Differentiability and Cauchy-Riemann Equations – Harmonic Functions – Power Series as an Analytic Function – Exponential and Trigonometric Functions – Logarithmic Functions – Inverse Functions.

Chapter 3: Sections: 3.1 to 3.6

Unit – 2: Complex Integration

18 Hours

Curves in the Complex Plane – Properties of Complex Line Integrals – Cauchy-Goursat Theorem – Consequence of Simply Connectivity – Winding Number or Index of a Curve – Cauchy Integral Formula – Taylor's Theorem – Zeros of Analytic Functions – Laurent Series.

Chapter 4: Sections: 4.1 to 4.5, 4.7, 4.10 to 4.12

Unit – 3: Conformal Mappings and Mobius Transformations

18 Hours

Principle of Conformal Mapping – Basic Properties of Mobius Maps – Fixed Points and Mobius Maps – Triples to Triples under Mobius Maps – The Cross-Ratio and its Invariance Property – Conformal Self-maps of Disks and Half-planes.

Chapter 5: Sections: 5.1 to 5.6

Unit – 4: Maximum Principle, Schwarz's Lemma and Liouville's Theorem 18 Hours

Maximum Modulus Principle - Hadamard's Three Circles/Lines Theorems - Schwarz's Lemma and its Consequences - Liouville's Theorem - Doubly Periodic Entire Function - Fundamental Theorem of Algebra - Zeros of Certain Polynomials.

Chapter 6: Sections: 6.1 to 6.7

Unit – 5: Classification of Singularities

18 Hours

Isolated and Non-isolated Singularities – Removable Singularities – Poles – Further Illustrations through Laurent's Series – Isolated Singularities at Infinity – Meromorphic Functions – Essential Singularities and Picard's theorem.

Chapter 7: Sections: 7.1 to 7.7

Text Book:

S. Ponnusamy, *Foundations of Complex Analysis*, Second Edition, Narosa Publishing House, New Delhi, 2012.

Reference Books:

- 1. Lars V. Ahlfors, *Complex Analysis*, 3rd Edition, McGraw-Hill Inc., New York, 1979.
- 2. J.W. Brown and R.V. Churchill, *Complex Variables and Applications*, 8th Edition, McGraw-Hill Higher Education, New York, 2009.
- 3. J.B. Conway, *Functions of One Complex Variable*, 2nd Edition, Narosa Publishing House, New Delhi, 1996.
- 4. V. Karunakaran, *Complex Analysis*, 2nd Edition, Narosa Publishing House, New Delhi, 2005.
- 5. H.A. Priestley, *Introduction to Complex Analysis*, 2nd Edition, Oxford University Press Inc., New York, 2005.

E-Materials:

- 1. https://nptel.ac.in/courses/111106141
- 2. https://ocw.mit.edu/courses/mathematics/18-04-complex-variables-with-applications-spring-2018/
- 3. https://www.coursera.org/learn/complex-analysis

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	S	S	S
CO2	S	S	M	M	M	S	S	S	S	S
CO3	S	S	M	M	M	S	S	S	S	S
CO4	S	S	M	M	M	S	S	S	S	S
CO5	S	S	M	M	M	S	S	S	S	S

^{*}PO – Programme Outcome, CO – Course Outcome.

^{*}S - Strong, M - Medium, L - Low.

M.Sc. Mathematics – 2022-2023 Onwards

Semester: III Paper Type: Core Credit: 5

Paper Code: Name of the Paper: Topology

Hours of Teaching: 90 Hours

Course Objectives

The objectives of this course are to

- 1 Introduce the mathematical analysis of open and closed sets and the significance of the topological spaces.
- 2 Discuss about the continuous functions on topological spaces, product topology and topology induced by the metric.
- 3 Educate the connected spaces, connected subspaces, components and local connectedness.
- 4 Inculcate the notions of compactness, compact subspaces, limit point compactness and local compactness.
- 5 Indoctrinate the strong theoretical background about the countability axioms, the separation axioms and the consequences theorems.

Course Outcomes

After the successful completion of this course, the students will be able to

- **CO1** Know the basics on open and closed sets and the significance of the topological spaces.
- **CO2** Comprehend the continuous functions on topological spaces, product topology and topology induced by the metric.
- CO3 Understand the connected spaces, connected subspaces, components and local connectedness.
- **CO4** Acquire the notions of compactness, compact subspaces, limit point compactness and local compactness.
- **CO5** Procure the strong theoretical background about the count ability axioms, the separation axioms and the consequences theorems.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	No	No
2	Yes	Yes	Yes	Yes	No	No
3	Yes	Yes	Yes	Yes	No	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit-1: Topological Spaces

18 Hours

Topological Spaces – Basis for a Topology – The Order Topology – The Product Topology on $X \times Y$ – The Subspace Topology – Closed Sets and Limit Points.

Chapter 2: Sections 12–17

Unit-2: Continuous Functions

18 Hours

Continuous Functions – The Product Topology – The Metric Topology.

Chapter 2: Sections 18–21

Unit-3: Connectedness

18 Hours

Connected Spaces – Connected Subspaces of the Real Line – Components and Local Connectedness.

Chapter 3:Sections 23–25

Unit-4: Compactness

18 Hours

Compact Spaces – Compact Subspaces of the Real Line – Limit Point Compactness – Local Compactness.

Chapter 3:Sections 26–29

Unit-5: Countability and Separation Axioms

18 Hours

The Countability Axioms – The Separation Axioms – Normal Spaces – The Urysohn Lemma – TheUrysohnMetrization Theorem – The Tietz Extension Theorem.

Chapter 4:Sections 30–35

Text Books:

James R. Munkres, *Topology*, 2nd Edition, Pearson Education Pvt. Ltd., Delhi, 2002.

Reference Books:

- 1. J. Dugundji, *Topology*, Prentice Hall of India Pvt. Ltd., New Delhi, 1975.
- 2. G.F. Simmons, *Introduction to Topology and Modern Analysis*, McGraw Hill Education, New York, 1963.
- 3. J.L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, 1955.
- 4. L.A. Steen and J.A. Seebach, *Counterexamples in Topology*, Holt, Rinechart and Winston, New York, 1970.
- 5. S. Willard, *General Topology*, Addison–Wesley Publishing Company, USA, 1970.

E-Materials:

- 1. https://ocw.mit.edu/courses/mathematics/18-901-introduction-to-topology-fall-2004/index.htm
- 2. https://ocw.mit.edu/courses/mathematics/18-904-seminar-in-topology-spring-2011/index.htm
- 3. https://swayam.gov.in/nd2_cec20_ma12/preview

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	S	S	S
CO2	S	S	M	M	M	S	S	S	S	S
CO3	S	S	M	M	M	S	S	S	S	S
CO4	S	S	M	M	M	S	S	S	S	S
CO5	S	S	M	M	M	S	S	S	S	S

^{*}PO – Programme Outcome, CO – Course Outcome.

^{*}S - Strong, M - Medium, L - Low.

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: III Paper type: Core Credit: 5

Paper code: Name of the Paper: Differential Geometry

Hours of Teaching:90 hrs

Course Objectives:

The main objective of this course are to:

- 1 Introduce space curves and its characterizations.
- 2 Study properties of curves on surfaces.
- 3 Understand the concepts of Geodesics and canonical Geodesics equations.
- 4 Teach some type of special surfaces such as Developable and Minimal surfaces.
- 5 Get the knowledge on differential geometry of surfaces.

Course Outcomes

After successful completion on the course the student will be able to

- CO1 Understand the concept of a space curve and compute its curvature and torsion.
- CO2 Acquire the knowledge of curves on a surfaceand its intrinsic properties.
- CO3 Analyze the geodesics and its normal properties and also familiar with Gauss Bonnet Theorem.
- **CO4** Determine the second fundamental form and developable associated with space curves.
- **CO5** Know Hilbert's Lemma and the fundamental existence theorem for surface theory.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	No	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit - 1 Space Curves

18 hours

Definition of a space curve – Arc length – Tangent – Normal and binormal – Curvature and torsion – Contact between curves and surfaces – Tangent surface – Involutes and evolutes – intrinsic equations – Fundamental existence theorem for space curve – Helices.

Chapter 1: Sections 1 to 9

Unit - 2 Intrinsic Properties of a Surface

18 hours

Definition of a surface – Curves on a surface – Surface of revolution – Helicoids – Metric – Direction coefficients – Families of curves – Isometric correspondence – Intrinsic properties. Chapter 2: Sections 1 to 9

Unit - 3 Geodesics

18 hours

Geodesics – Canonical geodesic equations – Normal properties of geodesics – Existence theorem – Geodesic parallels – Geodesic curvatures – Gauss Bonnet theorem – Gaussian curvature – Surface of constant curvature.

Chapter 2: Sections 10 to 18

Unit - 4 Non–Intrinsic Properties of a Surface

18 hours

The second fundamental form – Principal curvature – Lines of curvature – Developable – Developable associated with space curves and with curves on surface – Minimal surfaces –Ruled surfaces.

Chapter 3: Sections 1 to 8

Unit - 5 Differential Geometry of Surfaces

18 hours

Fundamental equations of surface theory – Fundamental existence theorem for surfaces – Compact surfaces whose points are umbilics– Hilbert's lemma – Compact surfaces of constant curvature – Complete surfaces.

Chapter 3: Sections 9 to 11

Chapter 4: Sections 1 to 5

Text book:

T.J.Willmore, An Introduction to Differential Geometry, Oxford UniversityPress,(17th Impression) New Delhi 2002. (Indian Print)

Reference Books:

- 1. Struik, D.T. Lectures on Classical Differential Geometry, Addison Wesley, Mass. 1950.
- 2. Kobayashi. S. and Nomizu. K. Foundations of Differential Geometry, Interscience Publishers, 1963.
- 3. Wilhelm Klingenberg: A course in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag 1978.
- 4. J.A. Thorpe Elementary topics in Differential Geometry, Under graduate Texts in Mathematics, Springer Verlag 1979.

E-Materials:

http://www.math.ku.dk/noter/filer/geom1.pdf

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	M	S	L	S	S	L	M
CO2	S	S	M	L	S	L	S	S	M	M
CO3	S	S	M	M	S	L	S	S	M	M
CO4	S	S	M	M	S	L	S	S	M	M
CO5	S	S	M	M	S	L	S	S	M	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: III Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: LaTeX

Hours of Teaching: 90hrs

Course Objectives:

The main objective of this course are to:

- 1 Inculcate the computer knowledge.
- 2 Introduce the LaTeXsoftware
- 3 Train in the Preparation of Project and dissertations using LaTex.
- 4 Educate the Latex coding.
- 5 Understand the concepts of Cross References, Footnotes, Margin pars and Endnotes

Course Outcomes

After successful completion on the course the student will be able to

- **CO1** Understand the basic LaTeX document and the e-contents.
- **CO2** Construct the structures of contents, index, glossary and text.
- **CO3** Create the type setting equations
- **CO4** Discuss several types of boxes and floats.
- **CO5** Prepare the basic documentation

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	No	Yes
2	Yes	Yes	Yes	No	No	Yes
3	Yes	Yes	No	No	No	Yes
4	Yes	Yes	No	No	No	Yes
5	Yes	Yes	Yes	No	No	Yes

Unit - 1 Basic Document and Bibliography

18 hours

Whats is LATEX – Simple typesetting – Fonts Type size – Document class – page style – page numbering – Formatting lengths – parts of a document – Dividing the document – what next? – Introduction – natbib – The BIBTEX program – BIBTEX Style files – Creating a bibliographic database.

Chapter: 1 to 4

Unit - 2 Contents, Index, Glossary, Text, Row and Column

18 hours

Table of contents – Index – Glossary. Borrowed words – Poetry in typing – Making lists – When order matters – Description and definitions.

Chapter: 5 to 6

Unit - 3 Typesetting Equations and Theorems

18 hours

Keeping tabs – Tables – The basics – Custom commands – More on mathematics – mathematics miscellany – New operations – The many fact of mathematics – Symbols – Theory in LATEX – Designer theorem-the amsthm package – Housekeeping.

Chapter: 7 to 9

Unit - 4 Several Kinds of boxes and Floats,

18 hours

LR boxes – Paragraph boxes – Paragraph boxes with specific height – Nested boxes – Role boxes – The figure environment – The table environment.

Chapter: 10 to 11

Unit - 5 Cross References in LATEX, Footnotes, Marginpars and

18 hours

Endnotes

Why cross reference? – Let LATEX do it – Pointing to a page-the package varioref – Pointing outside-the package xr – Lost the keys? Use lables.tex – Footnotes – Marginal notes – Endnotes.

Chapter: 12 to 13

Text book:

A Primer, Latex Tutorials, Indian TEX users group, Trivandrum, India.

www.tug.org.in

Reference Books:

- 1. Peter Flynn, A beginner's introduction to typesetting with LATEX, Silmaril Consultants, Textual Therapy Division, 2003.
- 2. George Gratzer, More Math Into LATEX, 4th Edition, Springer Science (2007).
- 3. Frank Mittelbach, Michel Goossens, The LaTex Companion, Second Edition, Addison-Wesley, 2004.

E-Materials:

- 1. https://www.latex-tutorial.com/tutorials/
- 2. https://www.latex-tutorial.com/
- 3. http://www.tug.org.in/tutorials.html

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	L	L	M	S	L	S	S	M
CO2	S	M	L	M	M	L	L	S	S	M
CO3	S	L	L	M	L	L	L	S	S	M
CO4	S	L	L	L	M	L	L	S	S	M
CO5	S	L	L	M	L	L	L	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022-2023 Onwards

Semester: III Paper Type: Core Elective Credit: 3

Paper Code: Name of the Paper: Discrete Mathematics

Hours of Teaching: 90 Hours

Course Objectives

The objectives of this course are to

1 Introduce the algebraic structures of lattices and Boolean algebra.

- 2 Construct the switching circuits with applications.
- 3 Educate the finite fields and its mathematics properties.
- 4 Inculcate the polynomials over finite fields, Irreducibility and factorization of polynomials.
- 5 Indoctrinate the coding theory with the linear and cyclic codes.

Course Outcomes

After the successful completion of this course, the students will be able to

- **CO1** Know the algebraic structures of lattices and Boolean algebra, and sketch the minimization of Boolean polynomials.
- CO2Model the switching circuits with applications.
- **CO3** Understand the finite fields and its mathematics properties.
- **CO4** Acquire the notions of the polynomials over finite fields, Irreducibility and factorization of polynomials.

CO5Apply the coding theory with the linear and cyclic codes in cryptography.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes	No	No	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	No	Yes	Yes	No
5	Yes	Yes	Yes	No	No	No

Unit-1: Lattices 18 hours

Properties and Examples of Lattices – Distributive Lattices – Boolean Algebras – Boolean Polynomials - Minimal Forms of Boolean Polynomials.

Chapter 1: Sections 1–6

Unit-2: Applications of Lattices

18 hours

Switching Circuits – Applications of Switching Circuits.

Chapter 2:Sections 7–8

Unit-3: Finite Fields

18 hours

Finite Fields.

Chapter 3:Sections 13

Unit-4: Polynomials

18 hours

Irreducible Polynomials over Finite Fields - Factorization of Polynomials over Finite Fields.

Chapter 3:Sections 14–15

Unit -5: Coding Theory

18 hours

Linear Codes – Cyclic Codes.

Chapter 4:Sections 17–18

Text Books:

Rudolf Lidl and Gunter Pilz, *Applied Abstract Algebra*, 2nd Indian Reprint, Springer Verlag, NewYork, 2006.

Reference Books:

- 1. A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., New Jersey.
- 2. J.L.Gersting, *Mathematical Structures for Computer Science*, 3rdEdn., ComputerScience Press, New York.
- 3. S.Wiitala, Discrete Mathematics A Unified Approach, McGraw Hill Book Co.

E-Materials:

- 1. http://www.discrete-math-hub.com/resources-and-help.html
- 2. https://onlinecourses.nptel.ac.in/noc22_cs123/preview
- 3. https://onlinecourses.nptel.ac.in/noc22_cs85/preview

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	S	S	S
CO2	S	S	M	M	S	S	S	S	S	S
CO3	S	S	M	M	M	S	S	S	S	S
CO4	S	S	M	M	M	S	S	S	S	S
CO5	S	S	M	M	S	S	S	S	S	S

 $[*]PO-Programme\ Outcome,\ CO-Course\ Outcome.$

^{*}S-Strong, M-Medium, L-Low.

M.Sc. Mathematics – 2022-2023 Onwards

Semester: III Paper Type: Core Elective Credit: 3

Paper Code: Name of the Paper: Operations Research

Hours of Teaching: 90 Hours

Course Objectives

Theobjectives of the course is to

- 1. Understand the steps in decisiontheoryandtreeanalysis
- 2. Make distinctions among various types of replacement and maintenance techniques.
- 3. Solve an LPP using dynamic programming approach..
- 4. Use differential calculus based methods to obtain the optimal solutions.
- 5. Derive and use Kuhn-Tucker conditions necessary for optimal vaule of an objective function.

Course Outcomes:

After successful completion on the course the student will be able to

- **CO1** Make decision under various decision-making environments.
- CO2 Acquire the knowledge of replacement analysis in handling problems like staffing problem and equipment renewal problem etc.
- Work effectively on Dynamic Programming models and their applications in solving Decision problem.
- **CO4** Provide a strong foundation in distinction between local, global and inflection extreme points.
- CO5 Solve non-linear programming problems.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit-1: Decision Theory

18 Hours

Steps in Decision theory Approach – Types of Decision Making Environments –DecisionMaking Under Uncertainty – Decision Making under Risk – Posterior Probabilities andBayesianAnalysis–DecisionTreeAnalysis–DecisionMakingwith Utilities.

Chapter11:Sections 11.1to 11.8

Unit-2: Replacement and Maintenance Models

18 Hours

FailureMechanismofitems-ReplacementofItemsDeteriorateswithTime-Replacementofitems that fail completely- other ReplacementProblems

Chapter17: Sections 17.1 to 17.5

Unit-3: Dynamic Programming

18 Hours

Introduction – Dynamic Programming Terminology – Developing Optimal Decision Policy – Dynamic Programming under Certainty – Dynamic Programming Approach for Solving LPP.

Chapter 22:Sections 22.1 to 22.5

Unit-4: Classical Optimization Methods

18 Hours

Introduction - Unconstrained Optimization - Constrained multivariable Optimization with inequality constraints - Problems.

Chapter 23: Sections 23.1 to 23.4

Unit-5: Non-Linear Programming Methods

18 Hours

Introduction - General NLPP - Graphical Solution - Quadratic Programming - Problems.

Chapter 24: Sections 24.1 to 24.4

Text Book:

J.K.Sharma, Operations Research Theory and Applications (SixthEdition), Trinity Press, Laxmi Publications Pvt. Ltd., NewDelhi, Reprint 2017.

ReferenceBooks:

- F.S.HillierandJ.Lieberman, IntroductionToOperationsResearch, (Eighthedition), TataMc Graw Hill PublishingCompany, New Delhi, 2006.
- 2. C.Beightler, D.Phillips, and B. Wilde, Foundations of Optimization, (Second edition), Prentice Hall New York, 1979.

- 3. M.S.Bazaraa, J.J.Jarvis, and H.D.Sharall, John Wileyand sons, New York, 1990.
- 4. D.GrossandC.M.Harris,FundamentalsOfQueuingTheory[3rdEdition],WileyandSons, New York, 1998.
- 5. Hamdy A. Taha, Operations Research, (Sixthedition), Prentice—Hallof India Private Limited, New Delhi.

E-Materials:

 $\underline{https://online courses.nptel.ac.in/noc19_ma29/prev}$

https://archive.nptel.ac.in/courses/111/107/111107104/

https://onlinecourses.nptel.ac.in/noc21_mg74/preview

https://mathworld.wolfram.com/topics/Optimization.html

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	S	S
CO2	S	S	M	M	S	M	S	S	S	S
CO3	S	S	M	M	S	M	S	S	S	S
CO4	S	S	M	M	S	M	S	S	S	S
CO5	S	S	M	M	S	M	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: III Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Mathematical Biology

Hours of Teaching: 90 Hours

CourseObjectives:

The main objectives of the course are to

- 1. Understand and knowthediscretepopulationgrowthmodels.
- 2. Develop the Model forthe Distribution of drugs in the body
- 3. Apply the Model for the Spread of Technological Innovations
- 4. Studythecontinuousgrowthmodelsand qualitative behavior of populations
- 5. Knowthemathematicalmodelsin epidemiology.

CourseLearningOutcomes

Afterthesuccessfulcompletionofthiscourse, the students will be able to:

CO1 Formulatethemathematicalmodelsforrealworldproblems

CO2 Understanding theconceptsofDiscretePopulationGrowthModels

CO3 DiscusstheContinuous Growth Models

CO4 Explain the Logistic Model with Harvesting

CO5 Analyze the Qualitative behavior of Populations and Mathematical Models

in Epidemiology.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit-1:DiscretePopulationGrowthModels

18 hours

Arithmetic Growth Model - Geometric Growth Model - Generalizations - Age StructuredPopulations.

Chapter2: Sections 2.2 to 2.5

Unit-2:ContinuousGrowthModels

18hours

The Linear Model-The Exponential Model-Model for the Distribution of drugs in the body

CoalitionModels.

Chapter3: Sections 3.2 to 3.5

Unit-3:ContinuousGrowthModels(contd.)

18 hours

Environmental Resistance - A Model for the Spread of Technological Innovations - TheGomertzModel -BertalanffyGrowth Model.

Chapter3: Sections 3.8 to 3.11

Unit-4: Qualitative behavior of Populations

18hours Auton

omous Equations - Steady and Equilibrium State - Stability of Equilibrium State - Logistic Model with Harvesting - Fixed Points and their stability - The Logistic Map.

Chapter5: Sections 5.2 to 5.7

Unit-5:MathematicalModelsinEpidemiology

18hours

Plant Epidemics - Some features of Human Epidemics - A Simple Deterministic EpidemicModel-A moreGeneralEpidemic: SIR Disease.

Chapter7:Sections 7.2 to 7.5

Text Book:

C.R.Ranganathan,

A First Course in Mathematical Models of Population Growth (with MATLAB Program),

AssociatedPublishingCompany,NewDelhi,2006.

ReferenceBooks:

- 1. Pundir, BioMathematics, APragatiEdition, 2006.
- 2. J.N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East-WestPressPvt.Ltd., NewDelhi, 1985.
- 3. Nicolas F. Britton, Essential Mathematical Biology, Springer InternationalEdition, First Indian reprint, 2004.

4. Murray, Mathematical Biology, Springer International Edition, First Indian reprint, 2004.

E-Materials:

- 1. https://www.smb.org/
- **2.** https://web.archive.org/web/20080827161431/http://www.biostatsresearch.com/repository/

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	S	M	S	M	S	L
CO2	M	M	M	S	S	L	M	S	L	M
CO3	S	M	S	S	L	L	S	L	M	L
CO4	S	M	S	L	M	M	M	S	L	S
CO5	S	S	M	L	S	M	M	L	L	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: III Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: QuantitativeTechniques

Hours of Teaching: 90hrs

CourseObjectives:

Theobjectives of the courseis to

- 1. Studythe linearprogrammingproblem and its solving method.
- 2. Understandthetransportationproblem as a linear programming problem.
- 3. Understand the concept of assignmentproblem.
- 4. Understand the concept of inventory control.
- 5. Know about the network analysis and its solution methods, PERT and CPM.

Course Outcomes:

After successful completion on the course the student will be able to

CO1Understand the concept of LPP and its solution.

CO2Acquire the knowledge of transportation problems.

CO3Work effectively on assignment models.

CO4 Provides a strong foundation in the study of thecharacteristics of inventory controls.

CO5Use PERT-CPMtechniqueforprojectmanagement network problems.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit-1:LinearProgrammingProblem

18 hours

Introduction-GraphicalSolutionMethod-SomeExceptionalCases-

GeneralLinearProgrammingProblem-FundamentalPropertiesofSolution-

The Computational Procedure-Simplex Method.

Chapter3: Sections 3.1 to 3.4

Chapter4: Sections 4.1 to 4.3

Unit-2:TransportationProblem

18 hours

Introduction -L.P Formulation of the Transportation Problem - Existence of Solution in T.P - Transportation Table - Solution of a Transportation Problem - Finding Initial Basic Feasible Solution - Testforoptimality - Economic Interpretation of u_j 's - Degeneracy in Transportation Problem - Transportation Algorithm (Modi Method).

Chapter 10: Sections 10.1 to 10.3, 10.5, 10.8 to 10.13

Unit-3:Assignment Problem

18 hours

Introduction-Mathematical Formulation of the Problem-Solution Methods of Assignment Problem-Special Cases in Assignment Problems-Travelling Sales man Problem.

Chapter11:Sections 11.1 to 11.4, 11.7

Unit-4:Inventory Control

18hours

Introduction – Types of Inventories – Reasons for Carrying Inventories – The InventoryDecisions – Objective of Scientific Inventory Control –Costs Associated with Inventories –Factors Affecting with Inventory Control – An inventory Control Problem - DeterministicInventoryproblem withNo shortages.

Chapter 19:Sections 19.1 to 19.10

Unit-5:NetworkschedulingbyPERTandCPM

18 hours

Introduction—Network:BasicComponents —LogicalSequencing-RulesofNetworkConstruction—ConcurrentActivities—CriticalPathAnalysis—ProbabilityConsiderationsinPERT-Distinction between PERT andCPM.

Chapter25

Text Book:

KantiSwarup, P.K. Gupta, Man Mohan, Operations Research, Sultan Chand & Sons, New Delhi, 2008.

ReferenceBooks

- 1. P.K.Gupta, Operations Research, 8-e, Krishna Prakasam Mandir, Meerut, 1993.
- 2. P.K.GuptaandD.S.Hira,OperationsResearch,S.Chand&Company,NewDelhi,2000.
- 3. J.K.Sharma,OperationsResearchTheoryandApplications,2-e,Mac MillianBusinessBooks, 2003.
- 4. Hamdy A. Taha, Operations Research, Pearson Education, New Delhi, 2002.

E-Materials:

https://mathworld.wolfram.com/ https://nptel.ac.in/courses/112106134

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	S	S	S
CO2	S	S	M	M	S	M	S	S	S	S
CO3	S	S	M	M	S	M	S	S	S	S
CO4	S	S	M	M	S	M	S	S	S	S
CO5	S	S	M	M	S	M	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: III Paper type: Open Elctive Credit: 3

Paper code: Name of the Paper: SCILAB

Hours of Teaching: 90hrs

Course Objectives:

The main objective of this course are to:

- 1 Understand the basic commands
- 2 Solve the system of equations
- 3 Construct the plotting lines and data.
- 4 Evaluate the polynomials
- 5 Solve the Ordinary differential equations.

Course Outcomes

After successful completion on the course the student will be able to

- **CO1** Acquire the practical knowledge of SCILAB
- CO2 Understand the matrices, vectors in SCILAB
- CO3 Visualize the mathematical objects in 2D and 3D
- **CO4** Acquire the knowledge of polynomials
- **CO5** Obtain the solution of Ordinary Differential equations

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	Yes	Yes	Yes	Yes
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	No	Yes	No

Unit-1 Introduction to SciLAbB

18 hours

Login - Talking between Scilab and the Editor - Basic Commands - Linear Algebra - Loops and Conditionals - Help in Scilab.

Chapter 1: Sections 1.1 to 1.7

Unit-2 Matrix Calculation

18 Hours

Matrices and Vectors - Solving Equations - Creating Matrices - Systems of Equations.

Chapter 2: Section 2.2

Unit-3 Data and Function Plots

18 hours

Plotting Lines and Data - Adding a Line - Hints for Good Graphs - Graphs - Function Plotting - Component Arithmetic - Printing Graphs - Saving Graphs.

Chapter 3: Sections 3.2, 3.3

Unit- 4 Polynomials

18 Hours

Evaluation of Polynomials - Polynomials - Linear Least Squares (Heath Computer Problem).

Chapter 6: Sections 6.2, 6.3, 6.4

Unit-5 Differential Equation

18 Hours

Differential Equations - Scalar ODE's - Order 2 ODE's.

Chapter 8: Sections 8.2

Text book:

Graeme Chandler and Stephen Roberts, Scilab Tutorials for Computational Science, 2002.

Reference Books:

- Scilab for very beginners, Scilab Enterprises, S.A.S, 143, bis rue Yves Le Coz 78000 Versailles (France).
- 2. K. S. Surendran, SCILAB FOR DUMMIES, Version 2.6.
- 3. Some notes on SCILAB, Universit'e de Nice Sophia-Antipolis.

E-Materials:

https://www.scilab.org/

Mapping with Learning Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	L	S	S	M	L
CO2	S	S	M	L	S	L	S	S	L	M
CO3	S	S	S	S	S	L	S	S	M	L
CO4	S	S	M	M	S	L	S	S	L	L
CO5	S	S	M	S	S	L	S	S	M	L

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022-2023 Onwards

Semester: IV Paper Type: Core Credit: 4

Paper Code: Name of the Paper: Complex Analysis – II

Hours of Teaching: 75 Hours

Course Objectives

The objectives of this course are to

- 1 Introduce the concepts of residues and its properties.
- 2 Estimate the contour integrals and its applications.
- 3 Educate the analytic continuation and Poisson integral formula.
- 4 Inculcate the representations of meromorphic and entire functions.
- 5 Indoctrinate the applications of open mapping, Hurwitz and Riemann mapping theorems.

Course Outcomes

After the successful completion of this course, the students will be able to

- **CO1** Understand the concepts of residues and its properties.
- **CO2** Evaluate the contour integrals and its applications.
- **CO3** Know the analytic continuation and Poisson integral formula.
- **CO4**Acquire the representations of meromorphic and entire functions.
- **CO5** Procure the applications of open mapping, Hurwitz and Riemann mapping theorems.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	No	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	No	No
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	Yes	Yes	No

Unit – 1: Calculus of Residues

15 hours

Residue at a Finite Point – Residue at the Point at Infinity – Residue Theorem – Number of Zeros and Poles – Rouche's Theorem.

Chapter 7: Sections 7.1 to 7.6

Chapter 8: Sections 8.1 to 8.5

Unit – 2: Evaluation of Certain Integrals

15 hours

Integrals of three types - Singularities on the Real Axis - Integrals Involving Branch Points - Estimation of Sums.

Chapter 9: Sections 9.1 to 9.6

Unit – 3: Analytic Continuation

15 hours

Direct Analytic Continuation - Monodromy Theorem - Poisson Integral Formula - Analytic Continuation via Reflection.

Chapter 10: Sections 10.1 to 10.4

Unit – 4: Representation of Meromorphic and Entire Functions

15 hours

Infinite Sums and Meromorphic Functions - Infinite Product of Complex Numbers - Infinite Products of Analytic Functions - Factorization of Entire Functions - The Gamma Function - The Zeta Function - Jensen's Formula - The Order and the Genus of Entire Functions.

Chapter 11: Sections 11.1 to 11.8

Unit –5: Mapping Theorems

15 hours

Open Mapping Theorem and Hurwitz' Theorem - Basic Results on Univalent Functions - Normal Families - The Riemann Mapping Theorem - Bieberbach Conjecture - The Bloch-Landau Theorems - Picard's Theorem.

Chapter 12: Sections 12.1 to 12.7

Text Books:

S. Ponnusamy, *Foundations of Complex Analysis*, Second Edition, Narosa Publishing House, New Delhi. 2012.

Reference Books:

- 1. Lars V. Ahlfors, *Complex Analysis*, 3rd Edition, McGraw-Hill Inc., New York, 1979.
- 2. J.W. Brown and R.V. Churchill, *Complex Variables and Applications*, 8th Edition, McGraw-Hill Higher Education, New York, 2009.
- 3. J.B. Conway, *Functions of One Complex Variable*, 2nd Edition, Narosa Publishing House, New Delhi, 1996.
- 4. V. Karunakaran, *Complex Analysis*, 2nd Edition, Narosa Publishing House, New Delhi, 2005.
- 5. H.A. Priestley, *Introduction to Complex Analysis*, 2nd Edition, Oxford University Press Inc., New York, 2005.

E-Materials:

- 1. https://nptel.ac.in/courses/111106141
- 2. https://ocw.mit.edu/courses/mathematics/18-04-complex-variables-with-applications-spring-2018/
- 3. https://www.coursera.org/learn/complex-analysis

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	S	S	S
CO2	S	S	M	M	M	S	S	S	S	S
CO3	S	S	M	M	M	S	S	S	S	S
CO4	S	S	M	M	M	S	S	S	S	S
CO5	S	S	M	M	M	S	S	S	S	S

^{*}PO – Programme Outcome, CO – Course Outcome.

^{*}S - Strong, M - Medium, L - Low.

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Core Credit: 4

Paper code: Name of the Paper: Fluid Dynamics

Hours of Teaching: 75hrs

Course Objectives:

The main objective of this course are to:

- 1 Discuss kinematics of fluids in motion
- 2 Derive the equations of motion of a fluid
- 3 Introduce Three dimensional flows
- 4 Discuss Two dimensional image system
- 5 Analysis viscous flows

Course Outcomes

After successful completion of the course the student will be able to

- **CO1** Understand the concepts of kinematics of fluids in motions.
- **CO2** Find the pressure at a point in a moving fluid.
- **CO3** Discuss Stokes stream function.
- **CO4** Analyse complex velocity potential for standard two dimensional flows.
- **CO5** Derive the Navier Stokes equations of motion of a Viscous fluid.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	No	No
2	Yes	Yes	Yes	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	No	Yes	Yes	No

Unit-1: Kinematics of Fluids in Motion

15 hours

Real fluids and ideal fluids – Velocity of a fluid at a point, Stream lines, path lines, steady and unsteady flows – Velocity potential – The vorticity vector – Local and particle rates of changes – Equations of continuity – Worked examples – Acceleration of a fluid – Conditions at a rigid boundary.

Chapter 2: Sections 2.1 to 2.10

Unit-2: Equations of Motion of Fluid

15 hours

Pressure at a point in a fluid at rest – Pressure at a point in a moving fluid – Conditions at a boundary of two inviscid immiscible fluids – Euler's equation of motion – Discussion of the case of steady motion under conservative body forces.

Chapter 3: Sections 3.1 to 3.7

Unit-3: Some Three Dimensional Flows

15 hours

Introduction – Sources, sinks and doublets – Images in a rigid infinite plane – Axis symmetric flows – Stokes stream function.

Chapter 4: Sections 4.1, 4.2, 4.3, 4.5.

Unit-4: Some Two Dimensional Flows

15 hours

Meaning of two dimensional flow – Use of Cylindrical polar coordinate – The stream function – The complex potential for two dimensional, irrational incompressible flow – Complex velocity potentials for standard two dimensional flows – Some worked examples – Two dimensional image systems – The Milne Thompson circle Theorem.

Chapter 5: Sections 5.1 to 5.8

Unit-5: Viscous Flows

15 hours

Stress components in a real fluid – Relations between Cartesian components of stress – Translational motion of fluid elements – The rate of strain quadric and principal stresses – Some further properties of the rate of strain quadric – Stress analysis in fluid motion – Relation between stress and rate of strain – The co-efficient of viscosity and Laminar flow – The Navier – Stokes equations of motion of a Viscous fluid.

Chapter 8: Sections 8.1 to 8.9

Text book:

F. Chorlton, Text Book of Fluid Dynamics, CBS Publications. Delhi ,1985.

Reference Books:

- 1. R.W.Fox and A.T.McDonald. Introduction to Fluid Mechanics, Wiley, 1985.
- 2. E.Krause, Fluid Mechanics with Problems and Solutions, Springer, 2005.
- 3. B.S.Massey, J.W.Smith and A.J.W.Smith, Mechanics of Fluids, Taylor and Francis, New York, 2005 4. P.Orlandi, Fluid Flow Phenomena, Kluwer, New Yor, 2002.
- 4. T.Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, berlin, 2004.

E-Materials:

http://web.mit.edu/1.63/www/lecnote.html

Mapping With Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	L	S	L	S	S	L	M
CO2	S	S	M	M	S	L	S	S	L	M
CO3	S	S	M	M	S	L	S	S	L	L
CO4	S	S	M	S	S	L	S	S	M	L
CO5	S	S	M	M	S	L	S	S	L	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Core Credit: 5

Paper code: Name of the Paper: Functional Analysis

Hours of Teaching: 75hrs

CourseObjectives:

The main objective of this course are to:

- 1. Studythedetails of Banach SpacesandContinuous linear transformations
- 2. Get familiar with concepts of open mapping theorem also understand the properties of othogonal complements.
- 3. Provide the concept of conjugate space H*, adjoint, self-adjoint, normal andunitary operators.
- 4. Learn and understand the Preliminaries of Banachalgebras
- 5. Know about the structure of commutative Banach Algebras

CourseOutcomes:

Aftersuccessfulcompletion of the course the student will be able to

- **CO1**Analysethe Banachspace withexamples and Able to work comfortably with Continuous linear transformations
 - **CO2** Apply the conjugate operator and acquire the knowledge of openmappingtheorem.
- CO3 Discuss about the Hilbert spaces.
 - **CO4** Acquire the knowledge of Banach Algebra and Outline of spectral radius.
 - **CO5** Construct the Gelfand-Neumark theorem.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	No	No
3	Yes	Yes	No	No	Yes	Yes
4	Yes	Yes	No	No	Yes	No
5	No	Yes	No	Yes	No	No

UNIT-I:BanachSpaces

15 hours

Definition - Some examples - Continuous Linear Transformations - The Hahn -BanachTheorem.

Chapter 9: Sections 46 to 48

UNIT-II:BanachSpacesAnd HilbertSpaces

15 hours

Open mapping theorem - conjugate of an operator - Definition and some simple properties - Orthogonal complements - Orthonormal.

Chapter 9: Sections 50 and 51

Chapter 10:Sections 52, 53 and 54

UNIT-III:HilbertSpace

15 hours

Conjugate space H* - Adjoint of an operator - Self-adjoint operator - Normal and UnitaryOperators—Projections.

Chapter 10: Sections 55,56,57,58 and 59

UNIT-IV: Preliminaries of Banach Algebras

15hours Definitio

n and some examples - Regular and single elements - Topological divisors of zero -spectrum-theformulafor thespectral radius-theradical andsemi-simplicity.

Chapter12: Sections 64to 69

UNIT-V:StructureofCommutativeBanach Algebras

15hours

Gelfandmapping –Applicationsofthe formula $r(x) = \lim_{n \to \infty} ||x^n||^{1/n}$ - Involutions inBanachAlgebras-Gelfand-NeumarkTheorem.

Chapter13:Sections 70to73

Text Book:

G.F.Simmons , Introduction to topology and Modern Analysis, McGraw HillInternationalBook Company,NewYork, 1963.

ReferenceBooks:

- 1. W. Rudin Functional Analysis, Tata McGraw-Hill Publishing Company, New Delhi, 1973
- 2. G.Bachman&L.Narici, Functional Analysis Academic Press, New York, 1966.
- 3. H.C. Goffman and G.Fedrick, First course in Functional Analysis, Prentice Hall ofIndia, NewDelhi, 1987
- 4. E. Kreyszig Introductory Functional Analysis with Applications, John wiley& Sons.NewYork..1978.
- 5. Balmohan V. Limaye, Linear Functional Analysis for Scientists and Engineers, Springer.

E-Materials

http://www.math.ucdavis.edu/~hunter/book/ch5.pdf

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	S	S	S	M	S
CO2	S	S	M	M	S	S	S	S	M	S
CO3	S	S	M	M	S	S	S	S	M	S
CO4	S	S	M	M	S	S	S	S	M	S
CO5	S	S	M	M	S	S	S	S	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: Number theory and Cryptography

Hours of Teaching: 75hrs

Course Objectives:

The main objective of this course are to:

- 1. Demonstrate ability to learn elementary ideas from number theory which will have applications in cryptography.
- 2. Introduce various cryptosystems and apply them in the necessary fields.
- 3. Understand the concepts of public key and primality
- 4. Learn the public key cryptography and RSA algorithm
- 5. Get the knowledge about Factoring concepts.

Course Outcomes:

After successful completion on the course the student will be able to

- **CO1** Acquire the knowledge of elementary number theory
- **CO2** Apply various cryptosystems and understand the concepts of quadratic, residues and reciprocity
- CO3 Develop the idea of public key cryptography, RSA Algorithms.
- CO4 Solve problems using the continued fraction method and the quadratic sieve method.
- CO5 Demonstrate ability to apply concepts of Fermat factorization and factor bases.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	No

UNIT-1 Some Topics in Elementary Number Theory

15 hours

Time Estimates for doing arithmetic – Divisibility and Euclidean Algorithm – Congruence's– Some applications to Factoring.

Chapter I

UNIT-2 Cryptography

15 hours

Some simple cryptosystems – Enciphering matrices.

Chapter III

UNIT-3 Quadratic Residues

15 hours

Quadratics – Residues and reciprocity.

Chapter II

UNIT-4 Public Key

15 hours

The idea of Public key Cryptography – RSA – Discrete Law – Knapsack – Zero–Knowledge.Chapter IV: Sections 1 to 5

UNIT-5 Primality and Factoring

15 hours

Pseudo-primes – The rho method – Fermat factorization and factor bases – The continued fraction method – The quadratic sieve method.

Chapter V: Sections 1 to 5

Text Book:

Neal Koblitz, A Course in Number Theory And Cryptography, Springer-Verlag, New York,1987.

Reference Books:

- 1. Niven and Zuckerman, An Introduction to Theory of Numbers, Third Edition, Wiley Eastern Ltd, New Delhi, 1976.
- 2. David M. Burton, Elementary Number Theory, Wm. C. Brown Publishers, Dubuque, Iowa, 1989.
- 3. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer–Verlag,1972.

E-Materials:

- 1. http://mathworld.wolfram.com
- 2. https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/resources/lecture-4-number-theory-i/

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	M	M	S	S	S	S
CO2	S	S	S	M	M	S	S	S	S	S
CO3	S	S	S	M	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	S	S	S
CO5	S	S	S	M	S	M	S	S	S	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Core Elective Credit: 3

Paper code: Name of the Paper: AdvancedNumericalAnalysis

Hours of Teaching: 75hrs

CourseObjectives:

The main objective of this course are to:

- 1 Introducethederivationofnumericalmethodswitherroranalysis
- 2 Studythetranscendental andpolynomial equations
- 3 Acquire the knowledge of systemoflinear algebraic equations
- 4 Understandthedifferentiationandintegration
- 5 Solve problems oninterpolation and ordinary differential equations

CourseOutcomes:

Aftersuccessfulcompletion of the course the student will be able to

- **CO1** Examinethesolutions of transcendental and polynomial equations
- **CO2** Understandthesystemof linearalgebraic equations
- **CO3**Analyse the interpolationand extrapolation
- **CO4** Evaluatenumerical differentiation and integrations
- **CO5** Solve the differential equations by single and multi stepmethods

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	No	Yes	No
2	Yes	Yes	No	No	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	No	No	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT-1 TranscendentalandPolynomialEquations

15hours

Iterationmethodsbasedonseconddegreeequation—Rateofconvergence—Iterationmethods— Methods forcomplexroots—Polynomial equations.

Chapter2: Sections 2.4 to 2.8

UNIT-2 Systemof LinearAlgebraicEquations and Eigen

15hours

ValueProblems

Directmethods-Triangularisation, Cholesky and Partition methods-Erroranalysis-Iteration methods - Eigen values and Eigenvectors - Jacobi's method, Given's method, Rutishaughermethod and Power method.

Chapter3: Sections 3.2to 3.5

UNIT-3 Interpolation and Approximation

15hours

HermiteInterpolations—PiecewiseandSplineInterpolation—Bivariateinterpolation—Approximation—Least Squareapproximation—Uniform approximation.

Chapter4:Sections4.5to 4.10

UNIT-4 Differentiation and Integration

15hours

Numerical Differentiation—Partial Differentiation—Numerical Integration methods based on undetermined coefficients—Double integration.

Chapter5: Sections 5.2, 5.5, 5.6, 5.8, 5.11

UNIT-5 Ordinary Differential Equations

15hours

Numericalmethods-Singlestepmethods-Multistepmethods-Predictor-Correctormethods.

Chapter6: Sections 6.2 to 6.5

Text Book:

M.K.Jain, S.R.K.Iyengarand R.K.Jain, Numerical Methods For Scientificand Engineering Computation, 3rd Edition, New Age International, 1993.

ReferenceBooks:

- S.D.CorteanddeBoor, Elementary Numerical Analysis –
 An Algorithmicapproach, 3rd Edition, McGraw Hill International Book Company, 1980.
- 2. JamesB.Scarboraugh,NumericalMathematicalAnalysis,Oxford&IBHPublishingCompany,New Delhi.
- 3. F.B.Hildebrand, Introduction To Numerical Analysis, McGraw Hill, New York, 1956.

E-Materials:

- 1. https://www.math.upenn.edu/~wilf/DeturckWilf.pdf
- $\textbf{2.} \quad \underline{https://web.archive.org/web/20120225082123/http://kr.cs.ait.ac.th/~radok/math/mat7/stepsa.htm}$
- 3. https://ocw.mit.edu/courses/mechanical-engineering/2-993j-introduction-to-numerical-analysis-for-engineering-13-002j-spring-2005/

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	S	S	S	M	S
CO2	S	S	M	M	S	S	S	S	M	M
CO3	S	S	M	S	S	S	S	S	M	S
CO4	S	S	S	M	M	S	S	S	M	M
CO5	S	S	M	M	S	S	S	S	M	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Core Elective Credit: 3

Paper code:

Name of the Paper: Calculusof Variation and Integral

Equations

Hours of Teaching: 75hrs

Course Objectives:

The main objectives of this course are to:

- 1. Understand the concept of calculus of variation and its applications.
- 2. Introduce the various types of integral equations.
- 3. Solve variational problems with fixed and moving boundaries.
- 4. Studythemethodsofsuccessiveapproximations and Fredholmtheory.
- 5. AcquireknowledgeonapplicationstoOrdinaryDifferentialEquations.

Course Outcomes:

After successful completion of the course the student will be able to

- **CO1** Analyze the methods for variational problems with fixed boundaries.
- **CO2** Apply and solve the variational problems with moving boundaries.
- CO3 Define the methods to solve integral equations.
 - **CO4** Discuss the method of successive approximation and Fredholmtheory.
 - **CO5** Identify and Construct the solutions for real time applications.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	No	Yes	Yes	No	Yes	No
2	No	Yes	Yes	Yes	Yes	Yes
3	Yes	Yes	Yes	No	Yes	No
4	No	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit-I:VariationalProblemswith FixedBoundaries

15 hours

The conceptof Variation and its properties – Euler's equation – Variational problems for functionals of the form – Functionals dependent on higher order derivatives – Functionals dependent on Functions of several independent variables – Variational problem in parametric form – Some applications to problems of mechanics.

Book–1: Chapter1:Sections 1.1 to 1.7

Unit-II: Variational Problems with Moving Boundaries

15 hours

Variational problem with a Movable boundary for a functional dependent on two functions-One sided variations-Reflection and Refraction of extremals-Diffraction of lightraps.

Book–1:Chapter2: Sections 2.2 to 2.5

Unit-III:IntegralEquations

15hours

Introduction—Definition—Regularity conditions—Special kindsof Kernels—Eigen valuesand Eigen functions—Convolution integral—Reduction to a system of algebraic equations—Examples—Fredholmalternative—Examples—Anapproximationmethod.

Book–2:Chapter1: Sections 1.1 to 1.5

Chapter2: Sections 2.1 to 2.5

Unit-IV:MethodofSuccessiveApproximationsandFredholmTheory

15

 $\label{lem:hours} \textbf{hours} \textbf{Methodof} successive approximations-Iterative scheme-Examples-Volterraintegral equations-Examples-Somere sults about the resolvent kernel-Themethodof solution of Fredholm equation-Fredholm first theorem-Examples.$

Book-2:Chapter3:Sections3.1 to3.5

Chapter4: Sections: 4.1 to 4.3

Unit-V:ApplicationstoOrdinaryDifferentialEquations

15hours

Initial value problems—Boundary value problems—Examples—Singular integral equations—The Abelintegral equations - Examples.

Book-2: Chapter 5: Sections 5.1 to 5.3

Chapter8: Sections 8.1 to 8.2

Text Books:

- $1. \quad A.S. Gupta, \textit{Calculus of Variations with Applications}, PHI, New Delhi, 2005.$
- 2. Ram P.Kanwal, *Linear Integral Equations*, Theory and Techniques, Academic Press, New York, 1971.

ReferenceBooks:

- 1. M.D.Raisinghania, *IntegralEquations and Boundary Value Problems*, S. Chand&Co., New Delhi, 2007.
- 2. SudirK.PundirandRimplePundir,*IntegralEquationsandBoundaryValueProblems*,PragatiPrak asam, Meerut.2005.

E–Materials:

- 1. http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/CoV.pdf
- 2. https://archive.nptel.ac.in/courses/111/104/111104025/

Mapping with Learning outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	M	M	S
CO2	S	S	S	M	S	S	S	M	M	S
CO3	S	S	M	M	M	M	S	M	S	M
CO4	S	S	S	S	S	M	S	M	S	M
CO5	S	S	S	M	S	M	S	M	S	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*}S-Strong, M-Medium, L-Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Mathematical Economics

Hours of Teaching: 75hrs

CourseObjectives:

Themain objectives of the course are to

- 1. Provide basic knowledge of the origin of theoryofFIRM
- 2. Study the CES Production Function
- 3. Develop the PerfectCompetition
- 4. understandabout market equilibrium
- 5. Discuss the WelfareEconomics

CourseLearningOutcomes

Afterthesuccessfulcompletionofthiscourse, the students will be able to

- **CO1** understand the knowledgeof FIRM theoryandperfectcompetition
- **CO2** Analyzethe CESproduction
- **CO3** To acquire the knowledge of market equilibrium
- **CO4** To control thestability of equilibrium
- **CO5** Discuss thewelfareeconomics, taxes and subsidies

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit-1:TheTheory of FIRM

15 hours

Basic Concepts - Optimizing Behavior - Input Demands - Cost Functions - Joint Products - Generalization to m variables.

Chapter4: Sections 4.1 to 4.6

Unit-2:CESProduction 15 hours

Homogeneous Production functions – CES Production Function.

Chapter5: Sections 5.1 and 5.2

Unit-3:PerfectCompetition

15 hours

Assumptions of Perfect Competition - Demand Functions - Supply Functions - Commodity-Market Equilibrium-An application to Taxation.

Chapter6: Sections 6.1 to 6.5

Unit-4:MarketEquilibrium

15hours

Factor-Market Equilibrium - Existence and Uniqueness of Equilibrium - Stability of Equilibrium - Dynamic Equilibrium with Lagged Adjustment.

Chapter6: Sections 6.6to 6.9

Unit-5:WelfareEconomics

15 hours

Pareto Optimality - the efficiency of Perfect competition - The efficiency of Imperfect competition - External Effects in consumption and Production - Taxes and Subsidies –SocialWelfarefunctions-Thetheory of SecondBest.

Chapter11: Sections 11.1 to 11.7

Text Book:

James M. Henderson and Richard

E.Quandt,MicroEconomicTheoryAMathematicalApproach,(3rdEdn.)TataMcGrawHill,NewDelhi,2003.

ReferenceBooks

- William J. Baumol. Economic Theory and Operations Analysis, Prentice Hall ofIndia, NewDelhi, 1978
- 2. A.C.Chiang, Fundamental Methods of Mathematical Economics, McGraw Hill,NewYork, 1984
- 3. Michael D. Intriligator, Mathematical Optimization and Economic Theory, Prentice Hall, New York, 1971.

4. A.Kautsoyiannis, Modern Microeconomics (2ndedn) MacMillan, New York, 1979

E–Materials:

- **1.** https://curlie.org/Science/Math/Applications/Mathematical_Economics_and_Financial_Mathematics/
- **2.** http://master-economics-qem.univ-paris1.fr/about/?no_cache=1

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	M	S	M	S	L	S	L
CO2	M	L	M	S	L	S	M	S	L	M
CO3	S	S	L	S	S	L	S	S	M	L
CO4	S	S	M	L	M	M	S	M	L	S
CO5	M	L	M	S	L	M	M	S	L	M

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S – Strong, M – Medium, L – Low

M.Sc. Mathematics – 2022 - 2023 onwards

Semester: IV Paper type: Open Elective Credit: 3

Paper code: Name of the Paper: Entrepreneurial Development

Hours of Teaching: 75hrs

Course Objective:

The objectives of this course are to

- 1 Provideanunderstandingofbasicconceptintheareaof entrepreneurship
- 2 Exposestudentstotheideageneration, creating awareness of business opportunities, and familiarizing them with formal practices in effective project formation.
- 3 Understand an ProjectManagementandIdeaGeneration
- 4 Develop the NationalInstitute of Entrepreneurship and Small Business Development
- 5 Discuss the PMEGP- NEEDS- UYEGP

CourseLearningOutcomes

Afterthesuccessfulcompletionofthiscourse, the students will be able to

- CO1 Understandtheknowledgeofentrepreneurship
- **CO2** Develop the Entrepreneurial Development
- CO3 Analyze the entrepreneurial finance and role of various government agencies
- CO4 Develop the idea generation, creating awareness of business opportunities, and familiarizing them with formal practices
- CO5 Discuss the Government Policies and benefits.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	No
2	Yes	Yes	Yes Yes		Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Unit-1:Introduction 15hours

EntrepreneurandEntrepreneurship—Concept—Definition-ClassificationofEntrepreneurWomen

Entrepreneur - Functions of an Entrepreneur - Traits of successful Entrepreneur - EntrepreneursVsProfessionalManagers—RoleofanEntrepreneurinEconomicDevelopment-Future challenges.

Unit-2:EntrepreneurialDevelopment

15

hoursEntrepreneurialDevelopmentProgrammes—Meaning-EvolutionandObjectivesofEDP-InstitutionaleffortstodevelopEntrepreneurship-NationalSkillDevelopmentCorporation(NSDC)-RoleofGovernment inOrganisingEDPs-Operational ProblemofEDPs.

Unit-3:ProjectManagementandIdeaGeneration

15

hoursProjectManagement-ProjectIdentification-ProjectFormulation-

ProjectDesignandNetworkAnalysis-OverviewofProjectAppraisal-ProjectReport-

Identification and Selection of Business Opportunity-Idea Generation-

 $Overview of Techniques used for Idea Generation. \hbox{-Individual creativity}.$

Unit-4:EntrepreneurialFinanceandDevelopmentAgencies

15

hours Sources of Finance-Commercial Banks and Development Banks-

RoleofAgenciesinassistingEntrepreneurship-

DistrictIndustriesCenters(DIC),SmallIndustriesServiceInstitute(SISI),EntrepreneurshipDevelopmentInstituteofIndia(EDII),NationalInstituteofEntrepreneurship &Small

BusinessDevelopment(NIESBUD), NationalEntrepreneurshipDevelopment Board(NEDB).

Unit-5:Government Policies and Benefits

15 hours

TaxBenefits—TaxHolidays—AllowancefordeductingDepreciation—RehabilitationAllowance—Benefits available forMSMEs: PMEGP—NEEDS—UYEGP.

Text Books:

- 1. Dr.S.S.Khanka, Entrepreneurship Development S. Chand & Co., New Delhi.
- 2. JayashreeSuresh, EntrepreneurialDevelopment, MarghamPublication, Chennai.
- 3. VasantDesa,Dynamics ofEntrepreneurialDevelopment–HimalayaPublication.
- 4. RobertD.Hisrich,MichaelP.Peters&DeanA.Shepherd,Entrepreneurship, TataMcGraw Hill PublishingCompanyLimited, New Delhi.
- 5. Ravindranath V. Badi & Narayana, Entrepreneurship, Vrinda Publication (P) Ltd, New Delhi.

ReferencesBooks:

- 1. RabindraN.Kanungo,EntrepreneurshipandInnovation,SagePublications,NewDelhi.
- 2. HoltD.H., EntrepreneurshipNewVentureCreation.NewDelhi:PrenticeHallofIndia.
- 3. HisrichR, and Peters, M., Entrepreneurship. New Delhi: Tata McGraw Hill.
- 4. Rajkonwar A.B., Entrepreneurship, Kalyani Publisher, Ludhiana.
- 5. Charantimath, Poornima, Entrepreneurship Development and Small Business Enterprises, Pearson Education, New Delhi.

E-Materials:

- 1. http://www.indcom.tn.gov.in/pmegp.html
- 2. http://www.indcom.tn.gov.in/needs.html
- 3. http://www.indcom.tn.gov.in/uyegp.html

Mapping with Learning Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	S	M	S	M	S	L
CO2	M	M	M	S	S	L	M	S	L	M
CO3	S	M	S	S	L	L	S	L	M	L
CO4	S	M	S	L	M	M	M	S	L	S
CO5	S	S	M	L	S	M	M	L	L	S

^{*} PO – Programme Outcome, CO – Course Outcomes

^{*} S - Strong, M - Medium, L - Low

M.Sc. Mathematics – 2022-2023 Onwards

Semester: IV Paper Type: Open Elective Credit: 3

Paper Code: Name of the Paper: Programming in C++

Hours of Teaching: 75hrs

Course Objectives

The objectives of this course are to

- 1. Introduce the tokens expressions and control structures in C++.
- 2. Explore the usage of all basic functions in C++.
- 3. Educate the significance of various types of classes in C++.
- 4. Inculcate the inheritance structures in C++.
- 5. Indoctrinate the polymorphism concepts in C++.

Course Outcomes

After the successful completion of this course, the students will be able to

- **CO1** Know the tokens expressions and control structures in C++.
- **CO2** Understand the usage of all basic functions in C++.
- **CO3** Comprehend the significance of various types of classes in C++.
- **CO4** Acquire the knowledge about the inheritance structures in C++.
- **CO5**Apply the polymorphism concepts in C++.

Unit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	No	No	No
2	Yes	Yes	Yes	No	No	No
3	Yes	Yes	Yes	Yes	No	No
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	Yes	No	No

Unit-1: Tokens Expressions and Control Structures

15 hours

Tokens – Keywords – Identifiers and Constants – Basic Data Types – Uses Defined Data Types – Derived Data Types – Symbolic – Operators in C++ – Scope Resolution Operator – Manipolators – Operator Overloading – Control Structures.

Chapter 3: Sections 3.1 - 3.24

Unit-2: Functions 15 hours

Characteristic of OOP – Function Prototype – Default Arguments – Inline Functions – Function Overloading – Template Functions.

Chapter 4: Sections 4.2, 4.3, 4.6, 4.7, 4.9

Unit-3: Classes in C++

15 hours

Classes – Constructors and Destructors – Friend functions – Template Classes – New and Delete Operators – Operator Overloading.

Chapter 5: Sections 5.1 - 5.15

Chapter 6: Sections 6.1 - 6.9

Chapter 7: Sections 7.1 - 7.5

Unit-4: Inheritance 15 hours

Single Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance – Virtual Functions.

Chapter 8: Sections 8.1 - 8.8

Unit-5: **Polymorphism in C++**

15 hours

Polymorphism.

Chapter 9: Sections 9.6 - 9.7

Text Books:

E. Balagurusamy, *Object Oriented Programming with C++*, 4thEdn., Tata McGraw Hill Publishing Company Ltd., New Delhi, 2001.

Reference Books:

- 1. E. Balagurusamy, *Numerical Methods*, Tata McGraw Hill Publishing Company Ltd., New Delhi,1999.
- 2. John H. Mathews, *Numerical Methods for Mathematics, Science and Engineering*, 2ndEdn., Prentice Hall India Pvt. Ltd., 2003.

- 3. S.S. Sastry, *Introductory to Numerical Methods*, Prentice Hall India Pvt. Ltd., 2000.
- 4. H.C. Saxena, *Finite Differences and Numerical Analysis*, S. Chand & Company Ltd., New Delhi, 2005.

E-Materials:

- 1. https://onlinecourses.nptel.ac.in/noc21_cs02/preview
- 2. https://www.cet.edu.in/noticefiles/285_OOPS%20lecture%20notes%20Complete.pdf
- 3. https://www.msuniv.ac.in/images/e-content/1.0bject%20Oriented%20Programming%20with%20C%20and%20Java.pdf

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	S	S	S	S	S
CO2	S	S	M	M	S	S	S	S	S	S
CO3	S	S	M	M	S	S	S	S	S	S
CO4	S	S	M	M	S	S	S	S	S	S
CO5	S	S	M	M	S	S	S	S	S	S

^{*}PO – Programme Outcome, CO – Course Outcome.

^{*}S – Strong, M – Medium, L – Low.